Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Munich, Germany.
Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Erlangen, Germany.
Nat Chem. 2022 Jun;14(6):670-676. doi: 10.1038/s41557-022-00917-0. Epub 2022 Apr 18.
One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale. Here we present a light-fuelled molecular gearing system and demonstrate its superiority over passive thermally activated gearing. Translation of a 180° rotation into a 120° rotation is achieved while at the same time the direction of the rotation axis is shifted by 120°. Within such photogearing processes, precise motions at the nanoscale can be changed in direction and decelerated in a manner similar to macroscopic bevel-gear operations in an energy consuming way-a necessary prerequisite to employ gearing as an active component in future mechanical nano-systems.
利用功能纳米机械的真正潜力面临的主要挑战之一是如何精确地集成和传递运动。分子齿轮系统能够以相关的方式集成多个运动,将运动从一个位置传递到另一个位置,并改变它们的速度和方向。然而,目前还没有强大的方法可以在分子尺度上实现对齿轮运动的主动驱动。在这里,我们提出了一个基于光驱动的分子齿轮系统,并展示了它相对于被动热激活齿轮的优势。我们实现了将 180°的旋转转化为 120°的旋转,同时旋转轴的方向也偏移了 120°。在这种光齿轮系统中,可以以类似于宏观斜齿轮在能量消耗方式下的操作方式,在纳米尺度上精确地改变运动的方向和减速——这是将齿轮作为未来机械纳米系统中的主动组件的必要前提。