Zhong Fuyao, Ma Mingyu, Zhong Zhuoran, Lin Xinrong, Chen Mao
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
Chem Sci. 2020 Dec 8;12(5):1783-1790. doi: 10.1039/d0sc05061j.
Along with high power capability and energy density, long cycle life is regarded an essential performance requirement for energy storage devices. The rapid capacitance decline of conducting polymer-based electrodes remains a major technical challenge and precludes their practical applications in supercapacitors. In this work, a polyaniline (PANI) network is synthesized interfacial Buchwald-Hartwig polymerization for the first time, facilitating the construction of covalently connected PANI networks by ligand-promoted C-N bond formation. Particularly, the interfacial synthesis and subsequent gas release from pre-anchored protecting groups allow bottom-up and efficient access to porous cross-linked PANI (PCL-PANI) films that are free-standing and solvent-resistant. Upon assembling into supercapacitors, the PCL-PANI material enables an unprecedent long-term charge-discharge cycling performance (>18 000 times) without clear capacitance loss for an additive-free pseudocapacitive system. In addition, this synthesis affords electrodes entirely consisting of conducting polymers, yielding highly reversible gravimetric capacitance at 435 F g in a two-electrode system, and a high gravimetric energy of 12.5 W h kg while delivering an outstanding power density of 16 000 W kg , which is 10-fold higher than those of conventional linear PANI composite supercapacitors. This synthetic approach represents a novel and versatile strategy to generate additive/binder-free and high-performance conducting thin-films for energy storage.
除了高功率能力和能量密度外,长循环寿命被视为储能设备的一项基本性能要求。基于导电聚合物的电极电容快速下降仍然是一个主要技术挑战,阻碍了它们在超级电容器中的实际应用。在这项工作中,首次通过界面布赫瓦尔德-哈特维希聚合反应合成了聚苯胺(PANI)网络,通过配体促进的C-N键形成促进了共价连接的PANI网络的构建。特别地,界面合成以及预先锚定的保护基团随后的气体释放使得能够自下而上且高效地制备出独立且耐溶剂的多孔交联聚苯胺(PCL-PANI)薄膜。组装成超级电容器后,PCL-PANI材料实现了前所未有的长期充放电循环性能(>18000次),对于无添加剂的赝电容体系没有明显的电容损失。此外,这种合成方法提供了完全由导电聚合物组成的电极,在两电极体系中产生了435 F g的高可逆重量电容,以及12.5 W h kg的高重量能量,同时提供了16000 W kg的出色功率密度,这比传统线性聚苯胺复合超级电容器高出10倍。这种合成方法代表了一种新颖且通用的策略,用于制备用于储能的无添加剂/无粘合剂的高性能导电薄膜。