Kimura Shun, Kimura Shojiro, Kato Ken, Teki Yoshio, Nishihara Hiroshi, Kusamoto Tetsuro
Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
Chem Sci. 2021 Jan 5;12(6):2025-2029. doi: 10.1039/d0sc05965j.
Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into host -PyBTM molecular crystals. The magnetic field (0-14 T), temperature (4.2-20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.
有机自由基是一类新兴的发光体,具有多重自旋态,并可能表现出自旋-发光相关特性。我们研究了最近报道的一种光稳定发光自由基,即掺杂在主体 - (3,5 - 二氯 - 4 - 吡啶基)双(2,4,6 - 三氯苯基)甲基自由基(PyBTM)分子晶体中的PyBTM发射磁场敏感性的机制。通过测量单体和准分子的发射衰减,研究了磁场(0 - 14 T)、温度(4.2 - 20 K)以及掺杂浓度(0.1、4、10和22 wt%)对时间分辨发射的影响。对衰减曲线的量子力学模拟揭示了磁场的作用;它主要影响基态自由基二聚体的自旋子能级分布。这种情况与传统闭壳层发光体明显不同,在传统闭壳层发光体中,磁场调节其激发态自旋多重性。也就是说,基态开壳层分子的自旋自由度是实现磁场控制分子光功能的新关键。