Suppr超能文献

深入了解用于阴离子交换聚电解质的N-杂环铵基团的碱性稳定性。

Insight into the Alkaline Stability of N-Heterocyclic Ammonium Groups for Anion-Exchange Polyelectrolytes.

作者信息

Chen Nanjun, Jin Yiqi, Liu Haijun, Hu Chuan, Wu Bo, Xu Shaoyi, Li Hui, Fan Jiantao, Lee Young Moo

机构信息

Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

出版信息

Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19272-19280. doi: 10.1002/anie.202105231. Epub 2021 Jul 20.

Abstract

The alkaline stability of N-heterocyclic ammonium (NHA) groups is a critical topic in anion-exchange membranes (AEMs) and AEM fuel cells (AEMFCs). Here, we report a systematic study on the alkaline stability of 24 representative NHA groups at different hydration numbers (λ) at 80 °C. The results elucidate that γ-substituted NHAs containing electron-donating groups display superior alkaline stability, while electron-withdrawing substituents are detrimental to durable NHAs. Density-functional-theory calculations and experimental results suggest that nucleophilic substitution is the dominant degradation pathway in NHAs, while Hofmann elimination is the primary degradation pathway for NHA-based AEMs. Different degradation pathways determine the alkaline stability of NHAs or NHA-based AEMs. AEMFC durability (from 1 A cm to 3 A cm ) suggests that NHA-based AEMs are mainly subjected to Hofmann elimination under 1 A cm current density for 1000 h, providing insights into the relationship between current density, λ value, and durability of NHA-based AEMs.

摘要

N-杂环铵(NHA)基团的碱性稳定性是阴离子交换膜(AEM)和AEM燃料电池(AEMFC)中的一个关键课题。在此,我们报告了在80°C下对24种代表性NHA基团在不同水合数(λ)下的碱性稳定性进行的系统研究。结果表明,含有供电子基团的γ-取代NHA表现出优异的碱性稳定性,而吸电子取代基则对耐用的NHA有害。密度泛函理论计算和实验结果表明,亲核取代是NHA中的主要降解途径,而霍夫曼消除是基于NHA的AEM的主要降解途径。不同的降解途径决定了NHA或基于NHA的AEM的碱性稳定性。AEMFC耐久性(从1 A cm到3 A cm)表明,基于NHA的AEM在1 A cm电流密度下1000 h主要经历霍夫曼消除,这为基于NHA的AEM的电流密度、λ值和耐久性之间的关系提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验