Chen Nanjun, Hu Chuan, Lee Young Moo
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea.
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Acc Chem Res. 2025 Mar 4;58(5):688-702. doi: 10.1021/acs.accounts.4c00695. Epub 2025 Feb 10.
Next-generation cost-effective anion exchange membrane (AEM) fuel cells (AEMFCs) and AEM water electrolyzers (AEMWEs) have emerged as promising alternatives to costly proton exchange membrane (PEM) fuel cells and water electrolyzers due to the possibility of utilizing platinum-group-metal (PGM)-free catalysts and phasing out unsustainable perfluorosulfonic acid polymers. Anion exchange polyelectrolytes (AEPs), which can be utilized as AEMs or ionomers, are pivotal materials in AEM devices. Despite extensive exploration in the past decade, the application of AEPs has been significantly impeded by their poor ionic conductivity, insufficient alkaline stability, and unfavorable mechanical properties. Therefore, developing highly conductive and robust AEPs is critical to the success of AEMFCs and AEMWEs. (i) Our group has developed a series of highly conductive and durable poly(aryl--aryl piperidinium) (c-PAP) AEPs to address the aforementioned issues. c-PAP AEMs and ionomers enable outstanding OH conductivity (>160 mS cm at 80 °C), alkaline stability (1 M NaOH at 80 °C > 2000 h), dimensional stability, and mechanical properties (tensile strength > 80 MPa), giving them all the properties required for applications in AEM devices. (ii) Based on c-PAP AEMs and ionomers, we have developed high-performance AEMFCs and AEMWEs, as well as provided insights into the ionomer research and the design of membrane electrode assemblies. Typically, c-PAP AEMFCs reached the topmost peak power densities (PPDs) of 2.7 W cm at 80 °C in H-O along with 1000 h cell durability. Moreover, cathode-dried AEMWEs achieved a record-breaking current density of 17 A cm in 1 M KOH, and the cell can be run stably at a 1.5 A cm current density for over 2000 h. The remarkable performances achieved by this new class of c-PAP AEPs identify them as the most promising candidates for practical applications in AEMFCs and AEMWEs. In this account, we will elaborate on our strategies and methodologies associated with c-PAP AEPs and AEM devices, covering the screening and identification of highly durable cation head groups and molecular-engineering approaches to design c-PAP AEMs and ionomers. Moreover, we underscore our strategy in terms of developing highly efficient and durable AEMFCs and AEMWEs. We also elucidate different approaches for further enhancing the ion conductivity and mechanical stability of c-PAP AEMs, including the design of backbones and side chains, cross-linking, and reinforcement. We firmly believe that our series of studies has made substantial contributions to the fields of AEM, ionomers, AEMFCs, and AEMWEs, which have advanced AEM technology to be on par with PEM technology, opening a new avenue for commercialization of AEMFCs and AEMWEs.
下一代具有成本效益的阴离子交换膜(AEM)燃料电池(AEMFCs)和AEM水电解槽(AEMWEs)已成为有前景的替代方案,可替代成本高昂的质子交换膜(PEM)燃料电池和水电解槽,因为它们有可能使用无铂族金属(PGM)催化剂并逐步淘汰不可持续的全氟磺酸聚合物。可作为AEM或离聚物使用的阴离子交换聚电解质(AEP)是AEM装置中的关键材料。尽管在过去十年中进行了广泛探索,但AEP的应用因其离子电导率差、碱性稳定性不足和机械性能不佳而受到显著阻碍。因此,开发高导电性和坚固的AEP对于AEMFCs和AEMWEs的成功至关重要。(i)我们团队开发了一系列高导电性和耐用的聚(芳基 - 芳基哌啶鎓)(c - PAP)AEP来解决上述问题。c - PAP AEM和离聚物具有出色的OH电导率(80°C时>160 mS cm)、碱性稳定性(80°C下1 M NaOH中>2000小时)、尺寸稳定性和机械性能(拉伸强度>80 MPa),使其具备在AEM装置中应用所需的所有性能。(ii)基于c - PAP AEM和离聚物,我们开发了高性能的AEMFCs和AEMWEs,并深入了解了离聚物研究以及膜电极组件的设计。通常,c - PAP AEMFCs在80°C的H - O中达到了2.7 W cm的最高峰值功率密度(PPD),电池耐久性达1000小时。此外,阴极干燥的AEMWEs在1 M KOH中实现了创纪录的17 A cm电流密度,并且该电池可以在1.5 A cm电流密度下稳定运行超过2000小时。这类新型c - PAP AEP所取得的卓越性能使其成为AEMFCs和AEMWEs实际应用中最有前景的候选材料。在本报告中,我们将详细阐述与c - PAP AEP和AEM装置相关的策略和方法,涵盖高耐久性阳离子头基的筛选和鉴定以及设计c - PAP AEM和离聚物的分子工程方法。此外,我们强调在开发高效耐用的AEMFCs和AEMWEs方面的策略。我们还阐明了进一步提高c - PAP AEM离子电导率和机械稳定性的不同方法,包括主链和侧链的设计、交联和增强。我们坚信我们的一系列研究为AEM、离聚物、AEMFCs和AEMWEs领域做出了重大贡献,这些研究推动了AEM技术与PEM技术并驾齐驱,为AEMFCs和AEMWEs的商业化开辟了一条新途径。