Department of Civil Engineering, National Institute of Technology Srinagar, Srinagar, Jammu, Kashmir, 190006, India.
Environ Sci Pollut Res Int. 2021 Nov;28(43):60900-60912. doi: 10.1007/s11356-021-14994-0. Epub 2021 Jun 24.
Sensitivity analysis (SA) is widely acknowledged as advantageous and worthwhile in recognizing parameters for model calibration and optimization, especially in complex hydrological models. Although Sobol global SA is an efficient way to evaluate the sensitivity indices, the computational cost is a constraint. This study analyzes the potential of Morris global SA to achieve results tantamount to Sobol SA, at a much cheaper computational expense, using a new approach of increasing the number of replications for the Morris algorithm. SA for two catchments is performed on a coupled hydrological model using Morris and Sobol algorithms. Two target functions are used for each of the algorithms. Sobol SA required 660000 model simulations accounting for about 400 computing hours, whereas increasing the replications from 1000 to 3000, the Morris method called for 63000 runs and 06 computing hours to produce significantly similar results. The Morris parameter ranking improved 50% with respect to Sobol SA by a three-fold increase in replications with a small 5-h increase in the computational expense. The results also suggest that target functions and catchments influence parameter sensitivity. The new approach to employ the Morris method of SA shows promising results for highly parameterized hydrological models without compromising the quality of SA, specifically if there are time constraints. The study encourages the use of SA, which is mainly skipped because of higher computational demands.
敏感性分析(Sensitivity Analysis,简称 SA)被广泛认为是识别模型校准和优化参数的有利和有价值的方法,特别是在复杂的水文模型中。尽管 Sobol 全局 SA 是评估敏感性指数的有效方法,但计算成本是一个限制。本研究分析了 Morris 全局 SA 的潜力,通过增加 Morris 算法的重复次数,以更便宜的计算成本实现与 Sobol SA 相当的结果。使用 Morris 和 Sobol 算法对两个流域的耦合水文模型进行了 SA。对于每个算法,使用了两个目标函数。Sobol SA 需要 660000 次模型模拟,约 400 个计算小时,而将重复次数从 1000 增加到 3000,Morris 方法需要 63000 次运行和 06 个计算小时,以产生非常相似的结果。通过将重复次数增加三倍,Morris 方法的参数排名相对于 Sobol SA 提高了 50%,而计算成本仅增加了 5 小时。结果还表明,目标函数和流域会影响参数敏感性。采用 Morris 方法进行 SA 的新方法对于高度参数化的水文模型显示出有希望的结果,而不会影响 SA 的质量,特别是在时间有限的情况下。本研究鼓励使用敏感性分析,由于计算需求较高,通常会跳过该方法。