Hsieh Nan-Hung, Reisfeld Brad, Bois Frederic Y, Chiu Weihsueh A
Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States.
Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States.
Front Pharmacol. 2018 Jun 8;9:588. doi: 10.3389/fphar.2018.00588. eCollection 2018.
Traditionally, the solution to reduce parameter dimensionality in a physiologically-based pharmacokinetic (PBPK) model is through expert judgment. However, this approach may lead to bias in parameter estimates and model predictions if important parameters are fixed at uncertain or inappropriate values. The purpose of this study was to explore the application of global sensitivity analysis (GSA) to ascertain which parameters in the PBPK model are non-influential, and therefore can be assigned fixed values in Bayesian parameter estimation with minimal bias. We compared the elementary effect-based Morris method and three variance-based Sobol indices in their ability to distinguish "influential" parameters to be estimated and "non-influential" parameters to be fixed. We illustrated this approach using a published human PBPK model for acetaminophen (APAP) and its two primary metabolites APAP-glucuronide and APAP-sulfate. We first applied GSA to the original published model, comparing Bayesian model calibration results using all the 21 calibrated model parameters (OMP, determined by "expert judgment"-based approach) vs. the subset of parameters (OIP, determined by GSA from the OMP). We then applied GSA to all the PBPK parameters, including those fixed in the published model, comparing the model calibration results using this of 58 model parameters (FMP) vs. the parameters (FIP, determined by GSA from FMP). We also examined the impact of different cut-off points to distinguish the influential and non-influential parameters. We found that Sobol indices calculated by eFAST provided the best combination of reliability (consistency with other variance-based methods) and efficiency (lowest computational cost to achieve convergence) in identifying influential parameters. We identified several originally calibrated parameters that were not influential, and could be fixed to improve computational efficiency without discernable changes in prediction accuracy or precision. We further found six previously fixed parameters that were actually influential to the model predictions. Adding these additional influential parameters improved the model performance beyond that of the original publication while maintaining similar computational efficiency. We conclude that GSA provides an objective, transparent, and reproducible approach to improve the performance and computational efficiency of PBPK models.
传统上,在基于生理的药代动力学(PBPK)模型中降低参数维度的方法是通过专家判断。然而,如果重要参数被固定在不确定或不适当的值,这种方法可能会导致参数估计和模型预测出现偏差。本研究的目的是探索全局敏感性分析(GSA)的应用,以确定PBPK模型中的哪些参数是无影响的,因此可以在贝叶斯参数估计中以最小偏差赋予固定值。我们比较了基于基本效应的Morris方法和三种基于方差的Sobol指数在区分“有影响”的待估计参数和“无影响”的待固定参数方面的能力。我们使用已发表的对乙酰氨基酚(APAP)及其两种主要代谢物APAP-葡萄糖醛酸苷和APAP-硫酸盐的人体PBPK模型来说明这种方法。我们首先将GSA应用于原始发表的模型,比较使用所有21个校准模型参数(OMP,通过基于“专家判断”的方法确定)与参数子集(OIP,由GSA从OMP中确定)的贝叶斯模型校准结果。然后,我们将GSA应用于所有PBPK参数,包括已发表模型中固定的参数,比较使用这58个模型参数(FMP)与参数(FIP,由GSA从FMP中确定)的模型校准结果。我们还研究了区分有影响和无影响参数的不同截止点的影响。我们发现,通过eFAST计算的Sobol指数在识别有影响参数方面提供了可靠性(与其他基于方差的方法一致)和效率(实现收敛的计算成本最低)的最佳组合。我们确定了几个原本校准的无影响参数,可以将其固定以提高计算效率,而预测准确性或精度没有明显变化。我们进一步发现六个先前固定的参数实际上对模型预测有影响。添加这些额外的有影响参数在保持相似计算效率的同时,提高了模型性能,超过了原始出版物。我们得出结论,GSA提供了一种客观、透明且可重复的方法来提高PBPK模型的性能和计算效率。