Suppr超能文献

基于理赔数据的模型开发与验证:用于识别急性肺栓塞后发生慢性血栓栓塞性肺动脉高压的高危患者。

Development and validation of a claims-based model to identify patients at risk of chronic thromboembolic pulmonary hypertension following acute pulmonary embolism.

机构信息

Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA, USA.

Actelion Pharmaceuticals US, Inc, a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA.

出版信息

Curr Med Res Opin. 2021 Sep;37(9):1483-1491. doi: 10.1080/03007995.2021.1947215. Epub 2021 Jul 8.

Abstract

OBJECTIVE

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease that often follows pulmonary embolism (PE). Screening for CTEPH is challenging, often delaying diagnosis and worsening prognosis. Predictive risk models for CTEPH could help identify at-risk patients, but existing models require multiple clinical inputs. We developed and validated a predictive risk model for CTEPH using health insurance claims that can be used by payers/quality-of-care organizations to screen patients post-PE.

METHODS

Adult patients newly diagnosed with acute PE (index date) were identified from the Optum De-identified Clinformatics Extended DataMart (January 2007-March 2018; development set) and IBM MarketScan (January 2008-June 2019; validation set) databases. Predictors were identified 12 months before or on the index PE. Risk of "likely CTEPH" was assessed post-PE based on CTEPH-related diagnoses and procedures since the CTEPH diagnosis code (ICD-10-CM: I27.24) was not available until 1 October 2017. Stepwise variable selection was used to build the model using the development set; model validation was subsequently conducted using the validation set.

RESULTS

The development set included 93,428 patients, of whom 11,878 (12.7%) developed likely CTEPH. Older age (odds ratios [OR] = 1.16-1.49), female (OR = 1.09), unprovoked PE (i.e. without thrombotic factors; OR = 1.14), hypertension (OR = 1.07), osteoarthritis (OR = 1.08), diabetes (OR = 1.07), chronic obstructive pulmonary disease (OR = 1.11), obesity (OR = 1.21) were associated with higher odds of likely CTEPH, and oral anticoagulants with lower odds (OR= 0.50, all  < .01). C-statistic was 0.77 in the development and validation sets.

CONCLUSION

A claims-based risk model reliably predicted the risk of CTEPH post-PE and could be used to identify high-risk patients who may benefit from focused monitoring.

摘要

目的

慢性血栓栓塞性肺动脉高压(CTEPH)是一种罕见疾病,常继发于肺栓塞(PE)。CTEPH 的筛查极具挑战性,往往会延迟诊断并使预后恶化。CTEPH 的预测风险模型可以帮助识别高危患者,但现有的模型需要多个临床输入。我们使用医疗保险理赔数据开发并验证了一种用于 CTEPH 的预测风险模型,支付方/医疗质量组织可使用该模型对 PE 后患者进行筛查。

方法

从 Optum De-identified Clinformatics 扩展 DataMart(2007 年 1 月至 2018 年 3 月;开发集)和 IBM MarketScan(2008 年 1 月至 2019 年 6 月;验证集)数据库中确定新诊断为急性 PE(索引日期)的成年患者。在 PE 之前或当日的 12 个月内确定预测因素。基于自 2017 年 10 月 1 日起 CTEPH 诊断代码(ICD-10-CM:I27.24)可用后,根据 CTEPH 相关诊断和程序评估“可能 CTEPH”的风险。使用开发集进行逐步变量选择来构建模型;随后使用验证集验证模型。

结果

开发集包括 93428 例患者,其中 11878 例(12.7%)患者发展为可能的 CTEPH。年龄较大(优势比[OR] = 1.16-1.49)、女性(OR = 1.09)、无诱因的 PE(即无血栓形成因素;OR = 1.14)、高血压(OR = 1.07)、骨关节炎(OR = 1.08)、糖尿病(OR = 1.07)、慢性阻塞性肺疾病(OR = 1.11)、肥胖(OR = 1.21)与可能的 CTEPH 发生风险较高相关,而口服抗凝剂的风险较低(OR = 0.50,均<0.01)。在开发和验证集中,C 统计量分别为 0.77 和 0.75。

结论

基于理赔数据的风险模型可可靠预测 PE 后发生 CTEPH 的风险,可用于识别可能受益于重点监测的高危患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验