Suppr超能文献

外生菌根真菌与温带森林土壤中氮循环速率的降低有关,而细菌功能群则没有相应的趋势。

Ectomycorrhizal fungi are associated with reduced nitrogen cycling rates in temperate forest soils without corresponding trends in bacterial functional groups.

机构信息

Boston University, Boston, USA.

Indiana University, Bloomington, USA.

出版信息

Oecologia. 2021 Jul;196(3):863-875. doi: 10.1007/s00442-021-04966-z. Epub 2021 Jun 25.

Abstract

Microbial processes play a central role in controlling the availability of N in temperate forests. While bacteria, archaea, and fungi account for major inputs, transformations, and exports of N in soil, relationships between microbial community structure and N cycle fluxes have been difficult to detect and characterize. Several studies have reported differences in N cycling based on mycorrhizal type in temperate forests, but associated differences in N cycling genes underlying these fluxes are not well-understood. We explored how rates of soil N cycle fluxes vary across gradients of mycorrhizal abundance (hereafter "mycorrhizal gradients") at four temperate forest sites in Massachusetts and Indiana, USA. We paired measurements of N-fixation, net nitrification, and denitrification rates with gene abundance data for specific bacterial functional groups associated with each process. We find that the availability of NO and rates of N-fixation, net nitrification, and denitrification are reduced in stands dominated by trees associated with ECM fungi. On average, rates of N-fixation and denitrification in stands dominated by trees associated with arbuscular mycorrhizal fungi were more than double the corresponding rates in stands dominated by trees associated with ectomycorrhizal fungi. Despite the structuring of flux rates across the mycorrhizal gradients, we did not find concomitant shifts in the abundances of N-cycling bacterial genes, and gene abundances were not correlated with process rates. Given that AM-associating trees are replacing ECM-associating trees throughout much of the eastern US, our results suggest that shifts in mycorrhizal dominance may accelerate N cycling independent of changes in the relative abundance of N cycling bacteria, with consequences for forest productivity and N retention.

摘要

微生物过程在控制温带森林中氮的可利用性方面起着核心作用。虽然细菌、古菌和真菌是土壤中氮的主要输入、转化和输出者,但微生物群落结构与氮循环通量之间的关系一直难以检测和描述。一些研究报告了基于温带森林菌根类型的氮循环差异,但这些通量背后的氮循环基因的相关差异尚未得到很好的理解。我们在美国马萨诸塞州和印第安纳州的四个温带森林地点探索了土壤氮循环通量在菌根丰度梯度上的变化,即“菌根梯度”。我们将氮固定、净硝化和反硝化速率的测量与与每个过程相关的特定细菌功能群的基因丰度数据进行配对。我们发现,与丛枝菌根真菌相关的树木为主的林分中,NO 的可利用性以及氮固定、净硝化和反硝化的速率降低。平均而言,与与丛枝菌根真菌相关的树木为主的林分中的氮固定和反硝化速率比与与外生菌根真菌相关的树木为主的林分中的相应速率高出一倍以上。尽管在菌根梯度上的通量速率存在结构,但我们没有发现氮循环细菌基因丰度的相应变化,并且基因丰度与过程速率没有相关性。鉴于 AM 相关的树木正在取代整个美国东部的 ECM 相关的树木,我们的结果表明,菌根优势的转变可能会加速氮循环,而与氮循环细菌的相对丰度变化无关,这对森林生产力和氮保留有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验