Suppr超能文献

相似文献

1
Quantitative 3D real-space analysis of Laves phase supraparticles.
Nat Commun. 2021 Jun 25;12(1):3980. doi: 10.1038/s41467-021-24227-0.
2
Tuning the Glass Transition: Enhanced Crystallization of the Laves Phases in Nearly Hard Spheres.
ACS Nano. 2020 Apr 28;14(4):3957-3968. doi: 10.1021/acsnano.9b07090. Epub 2020 Apr 15.
3
Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior.
ACS Nano. 2017 Aug 22;11(8):7702-7709. doi: 10.1021/acsnano.7b00505. Epub 2017 Aug 8.
4
High antisite defect concentrations in hard-sphere colloidal Laves phases.
Soft Matter. 2020 May 6;16(17):4155-4161. doi: 10.1039/d0sm00335b.
5
Towards the colloidal Laves phase from binary hard-sphere mixtures via sedimentation.
Soft Matter. 2018 Mar 28;14(13):2465-2475. doi: 10.1039/C8SM00237A.
6
Stability of LS and LS2 crystal structures in binary mixtures of hard and charged spheres.
J Chem Phys. 2009 Aug 14;131(6):064902. doi: 10.1063/1.3182724.
7
An Artificial Neural Network Reveals the Nucleation Mechanism of a Binary Colloidal AB Crystal.
ACS Nano. 2021 Mar 23;15(3):4335-4346. doi: 10.1021/acsnano.0c07541. Epub 2021 Feb 23.
8
Formation of Laves phases in buoyancy matched hard sphere suspensions.
Soft Matter. 2018 Jun 20;14(24):5130-5139. doi: 10.1039/c7sm02348k.
9
Influence of Softness on the Stability of Binary Colloidal Crystals.
ACS Nano. 2019 Dec 24;13(12):13829-13842. doi: 10.1021/acsnano.9b04274. Epub 2019 Nov 15.
10
Crystal-to-Crystal Transitions in Binary Mixtures of Soft Colloids.
ACS Nano. 2020 Nov 24;14(11):14861-14868. doi: 10.1021/acsnano.0c03966. Epub 2020 Nov 14.

引用本文的文献

本文引用的文献

1
Dual-axis STEM tomography at 200 kV: Setup, performance, limitations.
J Struct Biol. 2020 Sep 1;211(3):107551. doi: 10.1016/j.jsb.2020.107551. Epub 2020 Jun 24.
2
Crystallization in Confinement.
Adv Mater. 2020 Aug;32(31):e2001068. doi: 10.1002/adma.202001068. Epub 2020 Jun 25.
3
Spontaneous Crystallization in Systems of Binary Hard Sphere Colloids.
Phys Rev Lett. 2020 May 29;124(21):218003. doi: 10.1103/PhysRevLett.124.218003.
4
High antisite defect concentrations in hard-sphere colloidal Laves phases.
Soft Matter. 2020 May 6;16(17):4155-4161. doi: 10.1039/d0sm00335b.
5
Tuning the Glass Transition: Enhanced Crystallization of the Laves Phases in Nearly Hard Spheres.
ACS Nano. 2020 Apr 28;14(4):3957-3968. doi: 10.1021/acsnano.9b07090. Epub 2020 Apr 15.
6
Free Energy Landscape of Colloidal Clusters in Spherical Confinement.
ACS Nano. 2019 Aug 27;13(8):9005-9015. doi: 10.1021/acsnano.9b03039. Epub 2019 Jul 15.
7
Lasing Supraparticles Self-Assembled from Nanocrystals.
ACS Nano. 2018 Dec 26;12(12):12788-12794. doi: 10.1021/acsnano.8b07896. Epub 2018 Dec 14.
8
Magic number colloidal clusters as minimum free energy structures.
Nat Commun. 2018 Dec 10;9(1):5259. doi: 10.1038/s41467-018-07600-4.
9
Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties.
J Am Chem Soc. 2018 Nov 7;140(44):15038-15047. doi: 10.1021/jacs.8b09779. Epub 2018 Oct 25.
10
Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.
Nat Commun. 2018 Jun 8;9(1):2228. doi: 10.1038/s41467-018-04644-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验