Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany.
Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany.
Nat Commun. 2018 Dec 10;9(1):5259. doi: 10.1038/s41467-018-07600-4.
Clusters in systems as diverse as metal atoms, virus proteins, noble gases, and nucleons have properties that depend sensitively on the number of constituent particles. Certain numbers are termed 'magic' because they grant the system with closed shells and exceptional stability. To this point, magic number clusters have been exclusively found with attractive interactions as present between atoms. Here we show that magic number clusters exist in a confined soft matter system with negligible interactions. Colloidal particles in an emulsion droplet spontaneously organize into a series of clusters with precisely defined shell structures. Crucially, free energy calculations demonstrate that colloidal clusters with magic numbers possess higher thermodynamic stability than those off magic numbers. A complex kinetic pathway is responsible for the efficiency of this system in finding its minimum free energy configuration. Targeting similar magic number states is a strategy towards unique configurations in finite self-organizing systems across the scales.
在金属原子、病毒蛋白、惰性气体和核子等各种系统中,团簇的性质对组成粒子的数量非常敏感。某些数字被称为“魔法”,因为它们赋予系统封闭壳层和异常稳定性。到目前为止,魔法数团簇仅在原子之间存在吸引力的情况下被发现。在这里,我们表明在具有可忽略相互作用的受限软物质系统中存在魔法数团簇。乳液液滴中的胶体颗粒自发地组织成一系列具有精确定义壳结构的团簇。至关重要的是,自由能计算表明,具有魔法数的胶体团簇比非魔法数的胶体团簇具有更高的热力学稳定性。复杂的动力学途径是该系统在找到其最小自由能构型时具有高效率的原因。针对类似的魔法数状态是在跨越多个尺度的有限自组织系统中寻找独特构型的一种策略。