基于偶极矩诱导光趋性的 ZnO/Pt 介观马达的无燃料推进

Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors.

机构信息

Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China.

出版信息

Small. 2021 Aug;17(31):e2101388. doi: 10.1002/smll.202101388. Epub 2021 Jun 25.

Abstract

Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.

摘要

光驱动的微型马达由于在生物医学、环境修复或作为活性物质非平衡物理的模型系统方面的潜力而引起了相当大的兴趣。对微/纳米马达的运动方向和速度进行同时控制对于它们的功能至关重要,但由于布朗运动总是使方向随机化,因此仍然具有挑战性。在这里,开发了一种高效的光驱动 ZnO/Pt 分体型微马达,它能够在没有添加任何化学燃料的情况下,根据光照方向进行自我调整,并在高速(高达 32 µm s)下表现出负趋光性。由于光沿光照方向的有限穿透深度引起的不对称表面化学反应,存在一个由光触发的自建电场与光照平行。马达的趋光运动是通过在分体型微马达的两个半球上由于 ζ 电位的不对称分布而引起的电泳旋转来实现的,从而与电场对齐。值得注意的是,在 TiO /Pt 和 CdS/Pt 微马达上也实现了类似的趋光推进,这明确证明了在其他光驱动的分体型微马达中扩展偶极矩诱导的趋光推进机制的能力。最后,通过马达实现了酵母细胞的主动运输,证明了其执行复杂任务的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索