Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France.
Small. 2021 Aug;17(33):e2100514. doi: 10.1002/smll.202100514. Epub 2021 Jun 26.
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
石墨烯是一种二维材料,结合了众多出色的物理特性,包括高柔韧性和强度、极高的热导率和电子迁移率、透明度等,这使其成为探索基本物理现象的独特试验台。通过将石墨烯与其他纳米材料或(大分子)分子结合形成混合功能材料,可以进一步调整这些物理特性,通过设计,这些混合功能材料不仅可以显示各个组件的特性,还可以表现出由于组件协同相互作用而产生的新特性和增强特性。石墨烯混合方法的实施还可以提高多种技术应用的性能。本综述报告了由石墨烯与其他不同维度(0D、1D 和 2D)的低维纳米材料和(大分子)分子形成的混合材料,重点介绍了它们的合成方法。还综述了这些混合材料在传感、水净化、储能、生物医学、(光)催化和光电(电子)等领域的最重要应用,特别关注了这些混合材料与单个非混合组件相比的卓越性能。