Suppr超能文献

急性髓细胞白血病:治疗耐药性和四跨膜蛋白膜支架的潜在作用。

Acute myeloid leukemia: Therapy resistance and a potential role for tetraspanin membrane scaffolds.

机构信息

Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.

Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, United States.

出版信息

Int J Biochem Cell Biol. 2021 Aug;137:106029. doi: 10.1016/j.biocel.2021.106029. Epub 2021 Jun 24.

Abstract

Acute myeloid leukemia (AML) is characterized by the disruption of myeloid differentiation and accumulation of blast cells in the bone marrow. While AML patients respond favorably to induction chemotherapy, long-term outcomes remain poor due to a high rate of chemoresistance. Advances with targeted therapies, which can be used in combination with conventional chemotherapy, have expanded therapeutic options for patients. However, remission is often short-lived and followed by disease relapse and drug resistance. Therefore, there is a substantial need to improve treatment options by identifying novel molecular and cellular targets that regulate AML chemosensitivity. Membrane scaffolds such as the tetraspanin family of proteins often serve as signaling mediators, translating extracellular signaling cues into intracellular signaling cascades. In this review, we discuss the conventional and targeted treatment strategies for AML and review chemoresistance mechanisms with a focus on the tetraspanin family of membrane scaffold proteins.

摘要

急性髓系白血病(AML)的特征是髓系分化紊乱和骨髓中原始细胞的积累。尽管 AML 患者对诱导化疗反应良好,但由于化疗耐药率高,长期预后仍然不佳。靶向治疗的进展,可与常规化疗联合使用,为患者提供了更多的治疗选择。然而,缓解通常是短暂的,随后是疾病复发和耐药。因此,通过确定新的分子和细胞靶点来调节 AML 化疗敏感性,从而改善治疗选择具有重要意义。膜支架,如四跨膜蛋白家族的蛋白质,通常作为信号转导介质,将细胞外信号转导为细胞内信号级联反应。在这篇综述中,我们讨论了 AML 的常规和靶向治疗策略,并回顾了化疗耐药机制,重点关注膜支架蛋白四跨膜蛋白家族。

相似文献

1
Acute myeloid leukemia: Therapy resistance and a potential role for tetraspanin membrane scaffolds.
Int J Biochem Cell Biol. 2021 Aug;137:106029. doi: 10.1016/j.biocel.2021.106029. Epub 2021 Jun 24.
3
New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
Curr Opin Hematol. 2014 Mar;21(2):79-86. doi: 10.1097/MOH.0000000000000018.
4
Stromal CYR61 Confers Resistance to Mitoxantrone via Spleen Tyrosine Kinase Activation in Human Acute Myeloid Leukaemia.
Br J Haematol. 2015 Sep;170(5):704-18. doi: 10.1111/bjh.13492. Epub 2015 May 14.
6
The rocky road to personalized medicine in acute myeloid leukaemia.
J Cell Mol Med. 2018 Mar;22(3):1411-1427. doi: 10.1111/jcmm.13478. Epub 2018 Jan 12.
7
Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.
PLoS One. 2017 Jan 6;12(1):e0169128. doi: 10.1371/journal.pone.0169128. eCollection 2017.
10
Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia.
Br J Haematol. 2020 Jun;189(5):815-825. doi: 10.1111/bjh.16456. Epub 2020 Mar 5.

引用本文的文献

1
The drug resistance feature of acute myeloid leukemia is related to the cell stiffness.
Biophys Rev (Melville). 2025 Jun 25;6(2):021402. doi: 10.1063/5.0244619. eCollection 2025 Jun.
2
Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity.
Pharmaceuticals (Basel). 2025 Mar 12;18(3):396. doi: 10.3390/ph18030396.
5
Tspan protein family: focusing on the occurrence, progression, and treatment of cancer.
Cell Death Discov. 2024 Apr 22;10(1):187. doi: 10.1038/s41420-024-01961-0.
6
A novel α,β-unsaturated ketone inhibits leukemia cell growth as PARP1 inhibitor.
Med Oncol. 2024 Apr 11;41(5):113. doi: 10.1007/s12032-024-02324-6.
7
Curcumin in treatment of hematological cancers: Promises and challenges.
J Tradit Complement Med. 2024 Jan 5;14(2):121-134. doi: 10.1016/j.jtcme.2023.10.004. eCollection 2024 Mar.

本文引用的文献

2
Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation.
Oncogene. 2020 May;39(19):3910-3925. doi: 10.1038/s41388-020-1261-0. Epub 2020 Mar 19.
4
Gilteritinib or Chemotherapy for Relapsed or Refractory -Mutated AML.
N Engl J Med. 2019 Oct 31;381(18):1728-1740. doi: 10.1056/NEJMoa1902688.
5
How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia.
Leukemia. 2019 Dec;33(12):2795-2804. doi: 10.1038/s41375-019-0612-8. Epub 2019 Oct 18.
6
Pharmacokinetic/Pharmacodynamic Modeling to Support the Re-approval of Gemtuzumab Ozogamicin.
Clin Pharmacol Ther. 2019 Nov;106(5):1006-1017. doi: 10.1002/cpt.1500. Epub 2019 Jul 9.
7
CD82 supports survival of childhood acute myeloid leukemia cells via activation of Wnt/β-catenin signaling pathway.
Pediatr Res. 2019 Jun;85(7):1024-1031. doi: 10.1038/s41390-019-0370-3. Epub 2019 Mar 12.
8
Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML.
N Engl J Med. 2018 Jun 21;378(25):2386-2398. doi: 10.1056/NEJMoa1716984. Epub 2018 Jun 2.
10
Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation.
N Engl J Med. 2017 Aug 3;377(5):454-464. doi: 10.1056/NEJMoa1614359. Epub 2017 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验