Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy.
Redox Biol. 2021 Sep;45:102040. doi: 10.1016/j.redox.2021.102040. Epub 2021 Jun 19.
Duchenne muscular dystrophy (DMD) is the most frequent X chromosome-linked disease caused by mutations in the gene encoding for dystrophin, leading to progressive and unstoppable degeneration of skeletal muscle tissues. Despite recent advances in the understanding of the molecular processes involved in the pathogenesis of DMD, there is still no cure. In this study, we aim at investigating the potential involvement of the transsulfuration pathway (TSP), and its by-end product namely hydrogen sulfide (HS), in primary human myoblasts isolated from DMD donors and skeletal muscles of dystrophic (mdx) mice. In myoblasts of DMD donors, we demonstrate that the expression of key genes regulating the HS production and TSP activity, including cystathionine γ lyase (CSE), cystathionine beta-synthase (CBS), 3 mercaptopyruvate sulfurtransferase (3-MST), cysteine dioxygenase (CDO), cysteine sulfonic acid decarboxylase (CSAD), glutathione synthase (GS) and γ -glutamylcysteine synthetase (γ-GCS) is reduced. Starting from these findings, using Nuclear Magnetic Resonance (NMR) and quantitative Polymerase Chain Reaction (qPCR) we show that the levels of TSP-related metabolites such as methionine, glycine, glutathione, glutamate and taurine, as well as the expression levels of the aforementioned TSP related genes, are significantly reduced in skeletal muscles of mdx mice compared to healthy controls, at both an early (7 weeks) and overt (17 weeks) stage of the disease. Importantly, the treatment with sodium hydrosulfide (NaHS), a commonly used HS donor, fully recovers the impaired locomotor activity in both 7 and 17 old mdx mice. This is an effect attributable to the reduced expression of pro-inflammatory markers and restoration of autophagy in skeletal muscle tissues. In conclusion, our study uncovers a defective TSP pathway activity in DMD and highlights the role of HS-donors for novel and safe adjuvant therapy to treat symptoms of DMD.
杜氏肌营养不良症(DMD)是最常见的 X 染色体连锁疾病,由编码肌营养不良蛋白的基因突变引起,导致骨骼肌组织进行性和不可逆转的退化。尽管最近在理解 DMD 发病机制中的分子过程方面取得了进展,但仍没有治愈方法。在这项研究中,我们旨在研究转硫途径(TSP)及其终产物硫化氢(HS)在从 DMD 供体分离的原代人肌母细胞和 DMD 模型小鼠(mdx)骨骼肌中的潜在作用。在 DMD 供体的肌母细胞中,我们证明了调节 HS 产生和 TSP 活性的关键基因的表达,包括半胱氨酸γ 裂解酶(CSE)、半胱氨酸β 合酶(CBS)、3 巯基丙酮酸硫转移酶(3-MST)、胱氨酸双加氧酶(CDO)、半胱氨酸磺酸脱羧酶(CSAD)、谷胱甘肽合酶(GS)和γ -谷氨酰半胱氨酸合成酶(γ-GCS)减少。基于这些发现,我们使用核磁共振(NMR)和定量聚合酶链反应(qPCR)显示,与健康对照组相比,在疾病的早期(7 周)和明显阶段(17 周),mdx 小鼠骨骼肌中 TSP 相关代谢物(如蛋氨酸、甘氨酸、谷胱甘肽、谷氨酸和牛磺酸)的水平以及上述 TSP 相关基因的表达水平显著降低。重要的是,用 NaHS(一种常用的 HS 供体)治疗可完全恢复 7 周和 17 周龄 mdx 小鼠受损的运动活动能力。这是由于骨骼肌组织中促炎标志物的表达减少和自噬的恢复所致。总之,我们的研究揭示了 DMD 中 TSP 途径活性的缺陷,并强调了 HS 供体在治疗 DMD 症状的新型和安全辅助治疗中的作用。