Suppr超能文献

一种基于混合特征的用于机器人辅助长骨截骨的患者到图像配准方法。

A hybrid feature-based patient-to-image registration method for robot-assisted long bone osteotomy.

机构信息

School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China.

Shenyang Xingwen Technology Co., Ltd, Shenyang, China.

出版信息

Int J Comput Assist Radiol Surg. 2021 Sep;16(9):1507-1516. doi: 10.1007/s11548-021-02439-5. Epub 2021 Jun 26.

Abstract

PURPOSE

The purpose of this study is to provide a simple, feasible and effective patient-to-image registration method for robot-assisted long bone osteotomy, which has rarely been systematically reported. The practical requirement is to meet the accuracy of 1 mm or even higher without bone-implanted markers.

METHODS

A hybrid feature-based registration method termed CR-RAMSICP is proposed. Point-based coarse registration (CR) is accomplished relying on the optical retro-reflective markers attached to the tracked rigid body fixed out of the bone. In surface-based fine registration, an improved iterative closest point (ICP) algorithm based on the range-adaptive matching strategy (termed RAMSICP) is presented to cope with the robust precise matching between the asymmetric patient and image point clouds, which avoids converging to a local minimum.

RESULTS

A series of registration experiments based on the isolated porcine iliums are carried out. The results illustrate that CR-RAMSICP not only significantly outperforms CR and CR-ICP in the accuracy and reproducibility, but also exhibits better robustness to the CR errors and less sensitiveness to the distribution and number of fiducial points located in the patient point cloud than CR-ICP.

CONCLUSION

The proposed registration method CR-RAMSICP can stably satisfy the desired registration accuracy without the use of bone-implanted markers like fiducial screws. Besides, the RAMSICP algorithm used in fine registration is convenient for programming because any complex metrics or models are not involved.

摘要

目的

本研究旨在为机器人辅助长骨截骨术提供一种简单、可行且有效的患者到图像配准方法,这在以前的研究中很少被系统地报道过。实际需求是在不使用骨植入标记物的情况下达到 1mm 甚至更高的精度。

方法

提出了一种基于混合特征的配准方法,称为 CR-RAMSICP。基于光学逆反射标记物的点云粗配准(CR)是通过附着在骨骼外的跟踪刚性体来完成的。在基于曲面的精配准中,提出了一种改进的基于范围自适应匹配策略的迭代最近点(ICP)算法(称为 RAMSICP),以应对不对称患者和图像点云之间的稳健精确匹配,避免了收敛到局部最小值。

结果

在孤立的猪髂骨上进行了一系列配准实验。结果表明,CR-RAMSICP 不仅在精度和可重复性方面明显优于 CR 和 CR-ICP,而且对 CR 误差具有更好的鲁棒性,对位于患者点云的基准点的分布和数量的敏感性也低于 CR-ICP。

结论

所提出的配准方法 CR-RAMSICP 可以在不使用骨植入标记物(如基准螺钉)的情况下稳定地满足所需的配准精度。此外,精细配准中使用的 RAMSICP 算法由于不涉及任何复杂的度量或模型,因此便于编程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验