Suppr超能文献

一种新的强大的无标记方法,用于图像引导神经外科系统中的自动图像到患者配准。

A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

机构信息

a Digital Medical Research Center, School of Basic Medical Sciences , Fudan University , Shanghai , China.

b Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention , Shanghai , China.

出版信息

Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):319-325. doi: 10.1080/24699322.2017.1389411. Epub 2017 Nov 2.

Abstract

BACKGROUND

Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty.

METHODS

A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration.

RESULTS

Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm.

CONCLUSION

This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

摘要

背景

与图像引导神经外科系统中的传统基于点的配准相比,基于表面的配准更优,因为它在图像扫描前不使用基准标记,也不需要专门用于导航的图像采集。然而,大多数现有的基于表面的配准方法必须包括粗配准的手动步骤,这增加了配准时间,并带来了一些不便和不确定性。

方法

提出了一种新的自动基于表面的配准方法,该方法应用 3D 表面特征描述和匹配算法来获得粗配准的点对应关系,并在最后一步使用迭代最近点(ICP)算法获得图像到患者的配准。

结果

使用幻影和临床数据执行自动配准,并计算目标配准误差(TRE)以验证所提出方法的实用性和鲁棒性。在幻影实验中,配准精度在不同下采样分辨率(18-26mm)和不同支撑半径(2-6mm)下保持稳定。在临床实验中,通过配准整个头部表面,两名患者的平均 TRE 分别为 1.30mm 和 1.85mm。

结论

本研究介绍了一种新的基于 3D 特征匹配的稳健自动基于表面的配准方法。该方法在幻影和临床实验中使用不同的真实表面区域实现了足够的配准精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验