Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden.
Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
Langmuir. 2021 Jul 13;37(27):8339-8347. doi: 10.1021/acs.langmuir.1c01196. Epub 2021 Jun 27.
Dynamics of colloidal particles can be controlled by the application of electric fields at micrometer-nanometer length scales. Here, an electric field-coupled microfluidic flow-focusing device is designed for investigating the effect of an externally applied alternating current (AC) electric field on the hydrodynamic assembly of cellulose nanofibrils (CNFs). We first discuss how the nanofibrils align parallel to the direction of the applied field without flow. Then, we apply an electric field during hydrodynamic assembly in the microfluidic channel and observe the effects on the mechanical properties of the assembled nanostructures. We further discuss the nanoscale orientational dynamics of the polydisperse and entangled fibrillar suspension of CNFs in the channel. It is shown that electric fields induced with the electrodes locally increase the degree of orientation. However, hydrodynamic alignment is demonstrated to be much more efficient than the electric field for aligning CNFs. The results are useful for understanding the development of the nanostructure when designing high-performance materials with microfluidics in the presence of external stimuli.
胶体粒子的动力学可以通过在微米-纳米尺度施加电场来控制。在这里,设计了一种电场耦合的微流控流聚焦装置,用于研究外加交流(AC)电场对纤维素纳米纤维(CNF)的流体动力学组装的影响。我们首先讨论了在没有流动的情况下,纳米纤维如何平行于施加场的方向对齐。然后,我们在微流道中进行流体力组装的同时施加电场,并观察对组装纳米结构的机械性能的影响。我们进一步讨论了通道中多分散和缠结的 CNF 纤维悬浮液的纳米级取向动力学。结果表明,电极产生的电场局部增加了取向度。然而,与电场相比,流体力取向被证明更有效地对齐 CNF。这些结果对于理解在存在外部刺激的情况下,通过微流控设计具有高性能材料时,纳米结构的发展是有用的。