School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Departamento Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain.
Phys Rev Lett. 2022 Feb 18;128(7):074501. doi: 10.1103/PhysRevLett.128.074501.
Electrophoresis describes the motion of charged particles suspended in electrolytes when subjected to an external electric field. Previous experiments have shown that particles undergoing electrophoresis are repelled from nearby channel walls, contrary to the standard description of electrophoresis that predicts no hydrodynamic repulsion. Dielectrophoretic (DEP) repulsive forces have been commonly invoked as the cause of this wall repulsion. We show that DEP forces can only account for this wall repulsion at high frequencies of applied electric field. In the presence of a low-frequency field, quadrupolar electro-osmotic flows are observed around the particles. We experimentally demonstrate that these hydrodynamic flows are the cause of the widely observed particle-wall interaction. This hydrodynamic wall repulsion should be considered in the design and application of electric-field-driven manipulation of particles in microfluidic devices.
电泳描述了在外部电场作用下悬浮在电解质中的带电粒子的运动。先前的实验表明,电泳中的粒子会被排斥远离附近的通道壁,这与电泳的标准描述相反,标准描述预测没有流体动力排斥。电介质电泳(DEP)斥力通常被认为是这种壁排斥的原因。我们表明,DEP 力只能在施加电场的高频率下解释这种壁排斥。在低频场的存在下,观察到粒子周围存在四极电渗流。我们通过实验证明,这些流体动力流是广泛观察到的粒子-壁相互作用的原因。在微流控设备中设计和应用电场驱动的粒子操纵时,应该考虑这种流体动力壁排斥。