Suppr超能文献

验证用于临床精神病学的生物行为技术。

Validating Biobehavioral Technologies for Use in Clinical Psychiatry.

作者信息

Cohen Alex S, Cox Christopher R, Tucker Raymond P, Mitchell Kyle R, Schwartz Elana K, Le Thanh P, Foltz Peter W, Holmlund Terje B, Elvevåg Brita

机构信息

Department of Psychology, Louisiana State University, Baton Rouge, LA, United States.

Center for Computation and Technology Louisiana State University, Baton Rouge, LA, United States.

出版信息

Front Psychiatry. 2021 Jun 11;12:503323. doi: 10.3389/fpsyt.2021.503323. eCollection 2021.

Abstract

The last decade has witnessed the development of sophisticated biobehavioral and genetic, ambulatory, and other measures that promise unprecedented insight into psychiatric disorders. As yet, clinical sciences have struggled with implementing these objective measures and they have yet to move beyond "proof of concept." In part, this struggle reflects a traditional, and conceptually flawed, application of traditional psychometrics (i.e., reliability and validity) for evaluating them. This paper focuses on "resolution," concerning the degree to which changes in a signal can be detected and quantified, which is central to measurement evaluation in informatics, engineering, computational and biomedical sciences. We define and discuss resolution in terms of traditional reliability and validity evaluation for psychiatric measures, then highlight its importance in a study using acoustic features to predict self-injurious thoughts/behaviors (SITB). This study involved tracking natural language and self-reported symptoms in 124 psychiatric patients: (a) over 5-14 recording sessions, collected using a smart phone application, and (b) during a clinical interview. Importantly, the scope of these measures varied as a function of time (minutes, weeks) and spatial setting (i.e., smart phone vs. interview). Regarding reliability, acoustic features were temporally unstable until we specified the level of temporal/spatial resolution. Regarding validity, accuracy based on machine learning of acoustic features predicting SITB varied as a function of resolution. High accuracy was achieved (i.e., ~87%), but only when the acoustic and SITB measures were "temporally-matched" in resolution was the model generalizable to new data. Unlocking the potential of biobehavioral technologies for clinical psychiatry will require careful consideration of resolution.

摘要

在过去十年中,出现了复杂的生物行为学、遗传学、动态监测及其他测量方法,有望为精神疾病带来前所未有的深入了解。然而,临床科学在实施这些客观测量方法时遇到了困难,目前仍未超越“概念验证”阶段。部分原因在于,在评估这些方法时,传统心理测量学(即信度和效度)的应用存在传统且概念上的缺陷。本文聚焦于“分辨率”,即信号变化能够被检测和量化的程度,这在信息学、工程学、计算科学和生物医学科学的测量评估中至关重要。我们从精神科测量的传统信度和效度评估角度来定义和讨论分辨率,然后在一项利用声学特征预测自伤性想法/行为(SITB)的研究中强调其重要性。该研究对124名精神科患者的自然语言和自我报告症状进行了跟踪:(a)通过智能手机应用程序在5 - 14次记录时段内收集;(b)在临床访谈期间收集。重要的是,这些测量的范围随时间(分钟、周)和空间环境(即智能手机与访谈)而变化。在信度方面,在我们明确时间/空间分辨率水平之前,声学特征在时间上是不稳定的。在效度方面,基于机器学习的声学特征预测SITB的准确性随分辨率而变化。实现了较高的准确率(即约87%),但只有当声学和SITB测量在分辨率上“时间匹配”时,该模型才能推广到新数据。释放生物行为技术在临床精神病学中的潜力需要仔细考虑分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8202/8225932/c6a34ba40a6d/fpsyt-12-503323-g0001.jpg

相似文献

1
Validating Biobehavioral Technologies for Use in Clinical Psychiatry.
Front Psychiatry. 2021 Jun 11;12:503323. doi: 10.3389/fpsyt.2021.503323. eCollection 2021.
2
Digital phenotyping of negative symptoms: the relationship to clinician ratings.
Schizophr Bull. 2021 Jan 23;47(1):44-53. doi: 10.1093/schbul/sbaa065.
4
[Diagnostic structured interviews in child and adolescent's psychiatry].
Encephale. 2004 Mar-Apr;30(2):122-34. doi: 10.1016/s0013-7006(04)95422-x.
7
Predicting self-injurious thoughts in daily life using ambulatory assessment of state cognition.
J Psychiatr Res. 2021 Jun;138:335-341. doi: 10.1016/j.jpsychires.2021.04.013. Epub 2021 Apr 12.
9
Self-Injurious Thoughts and Behaviors Interview-Korean Version: Psychometric Properties.
Psychiatry Investig. 2021 Feb;18(2):157-165. doi: 10.30773/pi.2020.0302. Epub 2021 Feb 22.
10
Ambulatory digital phenotyping of blunted affect and alogia using objective facial and vocal analysis: Proof of concept.
Schizophr Res. 2020 Jun;220:141-146. doi: 10.1016/j.schres.2020.03.043. Epub 2020 Apr 1.

引用本文的文献

1
Rapid, reliable mobile assessment of affect-related motor processing.
Behav Res Methods. 2023 Dec;55(8):4260-4268. doi: 10.3758/s13428-022-02015-y. Epub 2022 Dec 16.
2
Natural Language Processing and Psychosis: On the Need for Comprehensive Psychometric Evaluation.
Schizophr Bull. 2022 Sep 1;48(5):939-948. doi: 10.1093/schbul/sbac051.

本文引用的文献

1
Digital phenotyping of negative symptoms: the relationship to clinician ratings.
Schizophr Bull. 2021 Jan 23;47(1):44-53. doi: 10.1093/schbul/sbaa065.
2
Ambulatory digital phenotyping of blunted affect and alogia using objective facial and vocal analysis: Proof of concept.
Schizophr Res. 2020 Jun;220:141-146. doi: 10.1016/j.schres.2020.03.043. Epub 2020 Apr 1.
3
Applying speech technologies to assess verbal memory in patients with serious mental illness.
NPJ Digit Med. 2020 Mar 11;3:33. doi: 10.1038/s41746-020-0241-7. eCollection 2020.
4
Association between suicidal ideation and acoustic parameters of university students' voice and speech: a pilot study.
Logoped Phoniatr Vocol. 2021 Jul;46(2):55-62. doi: 10.1080/14015439.2020.1733075. Epub 2020 Mar 6.
6
Transforming Psychiatry into Data-Driven Medicine with Digital Measurement Tools.
NPJ Digit Med. 2018 Aug 22;1:37. doi: 10.1038/s41746-018-0046-0. eCollection 2018.
7
Updating verbal fluency analysis for the 21st century: Applications for psychiatry.
Psychiatry Res. 2019 Mar;273:767-769. doi: 10.1016/j.psychres.2019.02.014. Epub 2019 Feb 7.
9
Moving psychological assessment out of the controlled laboratory setting: Practical challenges.
Psychol Assess. 2019 Mar;31(3):292-303. doi: 10.1037/pas0000647.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验