Suppr超能文献

利用数字测量工具将精神病学转变为数据驱动型医学。

Transforming Psychiatry into Data-Driven Medicine with Digital Measurement Tools.

作者信息

Hsin Honor, Fromer Menachem, Peterson Bret, Walter Collin, Fleck Mathias, Campbell Andrew, Varghese Paul, Califf Robert

机构信息

Verily Life Sciences, 269 East Grand Avenue, South San Francisco, CA 94080 USA.

Verily Life Sciences, 355 Main Street, Cambridge, MA 02142 USA.

出版信息

NPJ Digit Med. 2018 Aug 22;1:37. doi: 10.1038/s41746-018-0046-0. eCollection 2018.

Abstract

Psychiatry has been limited by historically rooted practices centered primarily on subjective observation. Fields such as oncology have progressed toward data-driven clinical decision-making that combines subjective clinical assessment of symptoms and preferences with biological measures such as genetics, biomarkers, imaging, and integrative physiology to derive quantitative risk scores and decision support. In contrast, psychiatry has just begun to scratch the surface of measurement-based care with validated clinical questionnaires. An opportunity exists to improve modern psychiatric care with novel data streams from digital sensors combined with clinical observation and subjective self-report. The prospect of integrating this complex information with modern computational and analytical methods could advance the field, both in research and clinical practice. Here we discuss this possibility and propose some key priorities to enable these innovations toward improving clinical outcomes in the future.

摘要

精神病学一直受到主要基于主观观察的、有着历史根源的实践的限制。肿瘤学等领域已朝着数据驱动的临床决策发展,这种决策将症状和偏好的主观临床评估与遗传学、生物标志物、影像学和综合生理学等生物学指标相结合,以得出定量风险评分并提供决策支持。相比之下,精神病学才刚刚开始通过经过验证的临床问卷触及基于测量的护理的表面。利用来自数字传感器的新数据流,结合临床观察和主观自我报告,存在改善现代精神病护理的机会。将这些复杂信息与现代计算和分析方法相结合的前景,有望在研究和临床实践两方面推动该领域的发展。在此,我们讨论这种可能性,并提出一些关键优先事项,以推动这些创新,从而在未来改善临床结果。

相似文献

1
Transforming Psychiatry into Data-Driven Medicine with Digital Measurement Tools.
NPJ Digit Med. 2018 Aug 22;1:37. doi: 10.1038/s41746-018-0046-0. eCollection 2018.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
Are innovation and new technologies in precision medicine paving a new era in patients centric care?
J Transl Med. 2019 Apr 5;17(1):114. doi: 10.1186/s12967-019-1864-9.

引用本文的文献

1
Challenges and standardisation strategies for sensor-based data collection for digital phenotyping.
Commun Med (Lond). 2025 Aug 19;5(1):360. doi: 10.1038/s43856-025-01013-3.
2
Clinical Characteristics of Patients With Enlarged Ventricles and Cognitive Impairment (EVCI): Case Series.
Neuropsychopharmacol Rep. 2025 Sep;45(3):e70029. doi: 10.1002/npr2.70029.
5
Promoting Digital Health Data Literacy: The Datum Project.
JMIR Form Res. 2025 Jan 3;9:e60832. doi: 10.2196/60832.

本文引用的文献

1
2
Digital biomarkers of cognitive function.
NPJ Digit Med. 2018 Mar 28;1:10. doi: 10.1038/s41746-018-0018-4. eCollection 2018.
3
Real-World Evidence In Support Of Precision Medicine: Clinico-Genomic Cancer Data As A Case Study.
Health Aff (Millwood). 2018 May;37(5):765-772. doi: 10.1377/hlthaff.2017.1579.
4
Relationship between Clinic and Ambulatory Blood-Pressure Measurements and Mortality.
N Engl J Med. 2018 Apr 19;378(16):1509-1520. doi: 10.1056/NEJMoa1712231.
5
What can treatment research offer general practice?
Lancet Psychiatry. 2018 Apr;5(4):295-297. doi: 10.1016/S2215-0366(17)30512-6. Epub 2017 Dec 14.
6
A Mobile Application for Monitoring and Management of Depressed Mood in a Vulnerable Pregnant Population.
Psychiatr Serv. 2018 Jan 1;69(1):104-107. doi: 10.1176/appi.ps.201600582. Epub 2017 Oct 16.
7
Digital Phenotyping: Technology for a New Science of Behavior.
JAMA. 2017 Oct 3;318(13):1215-1216. doi: 10.1001/jama.2017.11295.
8
Psychiatric Genomics: An Update and an Agenda.
Am J Psychiatry. 2018 Jan 1;175(1):15-27. doi: 10.1176/appi.ajp.2017.17030283. Epub 2017 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验