Suppr超能文献

用于群体脑协作的协同脑机接口研究进展与展望

[Research progress and prospect of collaborative brain-computer interface for group brain collaboration].

作者信息

Zhang Lixin, Chen Xiaocui, Chen Long, Gu Bin, Wang Zhongpeng, Ming Dong

机构信息

Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P.R.China.

Biomedical Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):409-416. doi: 10.7507/1001-5515.202007059.

Abstract

As the most common active brain-computer interaction paradigm, motor imagery brain-computer interface (MI-BCI) suffers from the bottleneck problems of small instruction set and low accuracy, and its information transmission rate (ITR) and practical application are severely limited. In this study, we designed 6-class imagination actions, collected electroencephalogram (EEG) signals from 19 subjects, and studied the effect of collaborative brain-computer interface (cBCI) collaboration strategy on MI-BCI classification performance, the effects of changes in different group sizes and fusion strategies on group multi-classification performance are compared. The results showed that the most suitable group size was 4 people, and the best fusion strategy was decision fusion. In this condition, the classification accuracy of the group reached 77%, which was higher than that of the feature fusion strategy under the same group size (77.31% 56.34%), and was significantly higher than that of the average single user (77.31% 44.90%). The research in this paper proves that the cBCI collaboration strategy can effectively improve the MI-BCI classification performance, which lays the foundation for MI-cBCI research and its future application.

摘要

作为最常见的主动式脑机交互范式,运动想象脑机接口(MI-BCI)存在指令集小和准确率低的瓶颈问题,其信息传输率(ITR)和实际应用受到严重限制。在本研究中,我们设计了6类想象动作,采集了19名受试者的脑电图(EEG)信号,研究了协作式脑机接口(cBCI)协作策略对MI-BCI分类性能的影响,比较了不同组规模和融合策略的变化对组多分类性能的影响。结果表明,最合适的组规模为4人,最佳融合策略为决策融合。在此条件下,组的分类准确率达到77%,高于相同组规模下特征融合策略的准确率(77.31%对56.34%),且显著高于平均单用户的准确率(77.31%对44.90%)。本文的研究证明,cBCI协作策略可有效提高MI-BCI分类性能,为MI-cBCI研究及其未来应用奠定了基础。

相似文献

1
[Research progress and prospect of collaborative brain-computer interface for group brain collaboration].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):409-416. doi: 10.7507/1001-5515.202007059.
2
Online detection of class-imbalanced error-related potentials evoked by motor imagery.
J Neural Eng. 2021 Apr 26;18(4). doi: 10.1088/1741-2552/abf522.
3
A novel method for classification of multi-class motor imagery tasks based on feature fusion.
Neurosci Res. 2022 Mar;176:40-48. doi: 10.1016/j.neures.2021.09.002. Epub 2021 Sep 8.
4
Towards increasing the number of commands in a hybrid brain-computer interface with combination of gaze and motor imagery.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:506-9. doi: 10.1109/EMBC.2015.7318410.
7
[Execution, assessment and improvement methods of motor imagery for brain-computer interface].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):434-446. doi: 10.7507/1001-5515.202101037.
8
Optimization of Task Allocation for Collaborative Brain-Computer Interface Based on Motor Imagery.
Front Neurosci. 2021 Jul 2;15:683784. doi: 10.3389/fnins.2021.683784. eCollection 2021.
9
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
PLoS One. 2022 Jul 22;17(7):e0268880. doi: 10.1371/journal.pone.0268880. eCollection 2022.

引用本文的文献

1
Single-trial P300 classification algorithm based on centralized multi-person data fusion CNN.
Front Neurosci. 2023 Feb 22;17:1132290. doi: 10.3389/fnins.2023.1132290. eCollection 2023.
2
[Brain-computer interface: from lab to real scene].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):405-408. doi: 10.7507/1001-5515.202105091.

本文引用的文献

1
To Explore the Potentials of Independent Component Analysis in Brain-Computer Interface of Motor Imagery.
IEEE J Biomed Health Inform. 2020 Mar;24(3):775-787. doi: 10.1109/JBHI.2019.2922976. Epub 2019 Jun 14.
2
Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
J Healthc Eng. 2017;2017:3789386. doi: 10.1155/2017/3789386. Epub 2017 Aug 7.
3
Enhancement of Group Perception via a Collaborative Brain-Computer Interface.
IEEE Trans Biomed Eng. 2017 Jun;64(6):1238-1248. doi: 10.1109/TBME.2016.2598875.
4
Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
J Neural Eng. 2017 Apr;14(2):026002. doi: 10.1088/1741-2552/aa5559. Epub 2016 Dec 22.
6
Boosting medical diagnostics by pooling independent judgments.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8777-82. doi: 10.1073/pnas.1601827113. Epub 2016 Jul 18.
8
A collaborative brain-computer interface for improving human performance.
PLoS One. 2011;6(5):e20422. doi: 10.1371/journal.pone.0020422. Epub 2011 May 31.
9
An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate.
IEEE Trans Biomed Eng. 2004 Jun;51(6):979-84. doi: 10.1109/TBME.2004.827062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验