Suppr超能文献

基于运动想象和 SSVEP 的单通道混合脑机接口系统的开发。

Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.

机构信息

Brain Research Center, National Chiao Tung University, Hsinchu City, Taiwan.

Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu City, Taiwan.

出版信息

J Healthc Eng. 2017;2017:3789386. doi: 10.1155/2017/3789386. Epub 2017 Aug 7.

Abstract

Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.

摘要

许多基于脑电图的脑机接口 (BCI) 系统都专注于新颖的特征提取算法、分类方法,并结合现有方法来创建混合 BCI。最近的几项研究表明,混合 BCI 系统在提高准确性或为用户提供更多命令方面具有各种优势。但即便如此,BCI 系统离日常使用还很遥远。具有更少的通道数而实现高性能是一个持续存在的挑战性问题,尤其是对于混合 BCI 系统,其中需要多个通道来记录来自两个或更多 EEG 信号分量的信息。因此,这项工作提出了一种单通道 (C3 或 C4) 混合 BCI 系统,它结合了运动想象 (MI) 和稳态视觉诱发电位 (SSVEP) 方法。本研究表明,除了 MI 特征外,还可以从 C3 或 C4 通道捕获 SSVEP 特征。结果表明,由于这些通道具有丰富的特征信息 (MI 和 SSVEP),所提出的混合 BCI 系统在两项任务中平均分类准确率为 85.6±7.7%,优于基于 MI 和 SSVEP 的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验