Yang Zhifang, Zheng Yanping, Li Wenliang, Zhang Jingping
Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, China.
Faculty of Chemistry, Tonghua Normal University, Tonghua, 134002, China.
Nanoscale. 2021 Jul 8;13(26):11534-11543. doi: 10.1039/d0nr07899a.
It is extremely important to design and explore high-efficiency anode materials in metal-ion batteries with strong stability, good electronic conductivity, and high storage capacity. Mxenes are susceptible to functionalization due to the presence of dangling bonds on the surface; thus, their chemical properties can be tuned accordingly by functional groups, which provide an opportunity to design novel materials with good electrochemical performance. The geometry and stability of Ti3C2X2 and Hf3C2X2 (X = Si, P, S, and Cl) monolayers are explored with the aid of density functional theory and the ab initio molecular dynamics (AIMD) simulations. Ti3C2X2 and Hf3C2X2 (X = S, Cl) exhibit high thermodynamic stability than Ti3C2X2 and Hf3C2X2 (X = Si, P) as found from formation energy and AIMD simulations. Then, the electrochemical performance of S- and Cl-functionalized Ti3C2 and Hf3C2 monolayers was further explored for use as anode materials in metal-ion batteries (including Li, Na, K, Mg, Ca, and Al). The high structural stability, metallic nature, low diffusion energy barrier, and proper open circuit voltage make Ti3C2 and Hf3C2 monolayer-functionalized with S and Cl as rechargeable metal-ion anode materials. More importantly, the stable multilayer adsorption of Li and Na (Li and Na: up to two layers) ensures high capacities for the Ti3C2S2 monolayer in Li- and Na-ion batteries (462.86 and 462.86 mA h g-1, respectively). In particular, compared with other 2D materials, Ti3C2S2 monolayer exhibits a higher capacity when used as an anode electrode material for Mg-ion batteries, mainly due to the perfect matching of the diameter of Mg and the lattice constant of Ti3C2S2. The results show that S- and Cl-functionalized Mxenes are promising metal-ion anode materials and provide valuable insights into the next generation of energy storage and conversion devices. This discovery is of positive significance for the design of new MXenes.
在金属离子电池中设计和探索具有强稳定性、良好电子导电性和高存储容量的高效阳极材料极为重要。由于表面存在悬键,MXenes易于功能化;因此,其化学性质可通过官能团进行相应调节,这为设计具有良好电化学性能的新型材料提供了契机。借助密度泛函理论和从头算分子动力学(AIMD)模拟,研究了Ti3C2X2和Hf3C2X2(X = Si、P、S和Cl)单层的几何结构和稳定性。从生成能和AIMD模拟结果可知,Ti3C2X2和Hf3C2X2(X = S、Cl)比Ti3C2X2和Hf3C2X2(X = Si、P)表现出更高的热力学稳定性。然后,进一步研究了S和Cl功能化的Ti3C2和Hf3C2单层作为金属离子电池(包括Li、Na、K、Mg、Ca和Al)阳极材料的电化学性能。高结构稳定性、金属特性、低扩散能垒以及合适的开路电压使S和Cl功能化的Ti3C2和Hf3C2单层成为可充电金属离子阳极材料。更重要的是,Li和Na的稳定多层吸附(Li和Na:最多两层)确保了Ti3C2S2单层在Li离子和Na离子电池中的高容量(分别为462.86和462.86 mA h g-1)。特别是,与其他二维材料相比,Ti3C2S2单层用作Mg离子电池的阳极电极材料时表现出更高的容量,这主要归因于Mg的直径与Ti3C2S2的晶格常数完美匹配。结果表明,S和Cl功能化的MXenes是很有前景的金属离子阳极材料,并为下一代储能和转换装置提供了有价值的见解。这一发现对新型MXenes的设计具有积极意义。