Kelai Massine, Repain Vincent, Tauzin Arthur, Li Weibin, Girard Yann, Lagoute Jérôme, Rousset Sylvie, Otero Edwige, Sainctavit Philippe, Arrio Marie-Anne, Boillot Marie-Laure, Mallah Talal, Enachescu Cristian, Bellec Amandine
Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France.
Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ Paris Sud, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay Cedex, France.
J Phys Chem Lett. 2021 Jul 8;12(26):6152-6158. doi: 10.1021/acs.jpclett.1c01366. Epub 2021 Jun 29.
Spin-crossover molecules are very attractive compounds to realize multifunctional spintronic devices. Understanding their properties when deposited on metals is therefore crucial for their future rational implementation as ultrathin films in such devices. Using X-ray absorption spectroscopy, we study the thermal transition of the spin-crossover compound Fe((3,5-(CH)Pz)BH) from submonolayer to multilayers on a Cu(111) substrate. We determine how the residual fraction of high spin molecules at low temperature, as well as the bistability range and the temperature of switching, depends on the layer thickness. The most spectacular effect is the clear opening of a 35 ± 9 K thermal hysteresis loop for a 3.0 ± 0.7 monolayers thick film. To better understand the role played by the substrate and the dimensionality on the thermal bistability, we have performed Monte Carlo Arrhenius simulations in the framework of a mechanoelastic model that include a molecule-substrate interaction. This model reproduces well the main features observed experimentally and can predict how the spin-crossover transition is modified by the thickness and the substrate interaction.
自旋交叉分子是实现多功能自旋电子器件的极具吸引力的化合物。因此,了解它们沉积在金属上时的性质对于它们未来作为此类器件中的超薄膜进行合理应用至关重要。利用X射线吸收光谱,我们研究了自旋交叉化合物Fe((3,5-(CH)Pz)BH)在Cu(111)衬底上从亚单层到多层的热转变。我们确定了低温下高自旋分子的残余分数以及双稳态范围和转变温度如何依赖于层厚度。最引人注目的效应是对于厚度为3.0±0.7单层的薄膜,清晰地出现了一个35±9 K的热滞回线。为了更好地理解衬底和维度在热双稳态中所起的作用,我们在一个包括分子 - 衬底相互作用的机械弹性模型框架内进行了蒙特卡罗阿仑尼乌斯模拟。该模型很好地再现了实验观察到的主要特征,并可以预测自旋交叉转变如何因厚度和衬底相互作用而改变。