Suppr超能文献

基于近期科学进展的可预见未来诊断放射科医生的工作量:增长预期与人工智能的作用

Workload of diagnostic radiologists in the foreseeable future based on recent scientific advances: growth expectations and role of artificial intelligence.

作者信息

Kwee Thomas C, Kwee Robert M

机构信息

Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.

Department of Radiology, Zuyderland Medical Center, Heerlen, Sittard-Geleen, The Netherlands.

出版信息

Insights Imaging. 2021 Jun 29;12(1):88. doi: 10.1186/s13244-021-01031-4.

Abstract

OBJECTIVE

To determine the anticipated contribution of recently published medical imaging literature, including artificial intelligence (AI), on the workload of diagnostic radiologists.

METHODS

This study included a random sample of 440 medical imaging studies published in 2019. The direct contribution of each study to patient care and its effect on the workload of diagnostic radiologists (i.e., number of examinations performed per time unit) was assessed. Separate analyses were done for an academic tertiary care center and a non-academic general teaching hospital.

RESULTS

In the academic tertiary care center setting, 65.0% (286/440) of studies could directly contribute to patient care, of which 48.3% (138/286) would increase workload, 46.2% (132/286) would not change workload, 4.5% (13/286) would decrease workload, and 1.0% (3/286) had an unclear effect on workload. In the non-academic general teaching hospital setting, 63.0% (277/240) of studies could directly contribute to patient care, of which 48.7% (135/277) would increase workload, 46.2% (128/277) would not change workload, 4.3% (12/277) would decrease workload, and 0.7% (2/277) had an unclear effect on workload. Studies with AI as primary research area were significantly associated with an increased workload (p < 0.001), with an odds ratio (OR) of 10.64 (95% confidence interval (CI) 3.25-34.80) in the academic tertiary care center setting and an OR of 10.45 (95% CI 3.19-34.21) in the non-academic general teaching hospital setting.

CONCLUSIONS

Recently published medical imaging studies often add value to radiological patient care. However, they likely increase the overall workload of diagnostic radiologists, and this particularly applies to AI studies.

摘要

目的

确定近期发表的包括人工智能(AI)在内的医学影像文献对诊断放射科医生工作量的预期影响。

方法

本研究纳入了2019年发表的440项医学影像研究的随机样本。评估了每项研究对患者护理的直接贡献及其对诊断放射科医生工作量(即单位时间内进行的检查数量)的影响。分别对一家学术型三级医疗中心和一家非学术型普通教学医院进行了分析。

结果

在学术型三级医疗中心环境中,65.0%(286/440)的研究可直接为患者护理做出贡献,其中48.3%(138/286)会增加工作量,46.2%(132/286)不会改变工作量,4.5%(13/286)会减少工作量,1.0%(3/286)对工作量的影响不明确。在非学术型普通教学医院环境中,63.0%(277/440)的研究可直接为患者护理做出贡献,其中48.7%(135/277)会增加工作量,46.2%(128/277)不会改变工作量,4.3%(12/277)会减少工作量,0.7%(2/277)对工作量的影响不明确。以AI为主要研究领域的研究与工作量增加显著相关(p<0.001),在学术型三级医疗中心环境中的优势比(OR)为10.64(95%置信区间(CI)3.25 - 34.80),在非学术型普通教学医院环境中的OR为10.45(95%CI 3.19 - 34.21)。

结论

近期发表的医学影像研究通常为放射科患者护理增添价值。然而,它们可能会增加诊断放射科医生的总体工作量,这尤其适用于AI研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d2/8241957/3698b78afbb7/13244_2021_1031_Fig1_HTML.jpg

相似文献

4
Qualitative and Quantitative Workplace Analysis of Staff Requirement in an Academic Radiology Department.
Rofo. 2021 Nov;193(11):1277-1284. doi: 10.1055/a-1472-6530. Epub 2021 May 27.
5
Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey.
Radiol Med. 2021 Jan;126(1):63-71. doi: 10.1007/s11547-020-01205-y. Epub 2020 Apr 29.
7
An update survey of academic radiologists' clinical productivity.
J Am Coll Radiol. 2008 Jul;5(7):817-26. doi: 10.1016/j.jacr.2008.02.018.
9
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.
Can Assoc Radiol J. 2018 May;69(2):120-135. doi: 10.1016/j.carj.2018.02.002. Epub 2018 Apr 11.
10
Is Artificial Intelligence the New Friend for Radiologists? A Review Article.
Cureus. 2020 Oct 24;12(10):e11137. doi: 10.7759/cureus.11137.

引用本文的文献

4
The role of AI in mitigating the impact of radiologist shortages: a systematised review.
Health Technol (Berl). 2025;15(3):489-501. doi: 10.1007/s12553-025-00970-y. Epub 2025 Apr 25.
5
Evolution of an Artificial Intelligence-Powered Application for Mammography.
Diagnostics (Basel). 2025 Mar 24;15(7):822. doi: 10.3390/diagnostics15070822.
7
The promise and limitations of artificial intelligence in CTPA-based pulmonary embolism detection.
Front Med (Lausanne). 2025 Mar 19;12:1514931. doi: 10.3389/fmed.2025.1514931. eCollection 2025.
9
Guiding AI in radiology: ESR's recommendations for effective implementation of the European AI Act.
Insights Imaging. 2025 Feb 13;16(1):33. doi: 10.1186/s13244-025-01905-x.
10
Artificial Intelligence and Radiologist Burnout.
JAMA Netw Open. 2024 Nov 4;7(11):e2448714. doi: 10.1001/jamanetworkopen.2024.48714.

本文引用的文献

1
Workload for radiologists during on-call hours: dramatic increase in the past 15 years.
Insights Imaging. 2020 Nov 23;11(1):121. doi: 10.1186/s13244-020-00925-z.
2
Burnout in Academic Radiologists in the United States.
Acad Radiol. 2020 Sep;27(9):1274-1281. doi: 10.1016/j.acra.2019.12.029. Epub 2020 Feb 7.
3
An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging.
J Am Coll Radiol. 2020 Jan;17(1 Pt B):165-170. doi: 10.1016/j.jacr.2019.07.019.
5
Differentiating diffuse from focal pattern on Computed Tomography in multiple myeloma: Added value of a Radiomics approach.
Eur J Radiol. 2019 Dec;121:108739. doi: 10.1016/j.ejrad.2019.108739. Epub 2019 Nov 7.
7
Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease.
Eur J Radiol. 2019 Nov;120:108687. doi: 10.1016/j.ejrad.2019.108687. Epub 2019 Sep 20.
8
Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000-2016.
JAMA. 2019 Sep 3;322(9):843-856. doi: 10.1001/jama.2019.11456.
9
Semi-quantitative CT assessment of fracture healing: How many and which CT reformats should be analyzed?
Eur J Radiol. 2019 Sep;118:181-186. doi: 10.1016/j.ejrad.2019.07.026. Epub 2019 Jul 19.
10
Assessment of acute bone loading in humans using [F]NaF PET/MRI.
Eur J Nucl Med Mol Imaging. 2019 Nov;46(12):2452-2463. doi: 10.1007/s00259-019-04424-2. Epub 2019 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验