Zhao Rui, Liu Tianshan, Xiao Jun, Lun Daniel P K, Lam Kin-Man
IEEE Trans Image Process. 2021;30:6081-6095. doi: 10.1109/TIP.2021.3091902. Epub 2021 Jul 5.
Invertible image decolorization is a useful color compression technique to reduce the cost in multimedia systems. Invertible decolorization aims to synthesize faithful grayscales from color images, which can be fully restored to the original color version. In this paper, we propose a novel color compression method to produce invertible grayscale images using invertible neural networks (INNs). Our key idea is to separate the color information from color images, and encode the color information into a set of Gaussian distributed latent variables via INNs. By this means, we force the color information lost in grayscale generation to be independent of the input color image. Therefore, the original color version can be efficiently recovered by randomly re-sampling a new set of Gaussian distributed variables, together with the synthetic grayscale, through the reverse mapping of INNs. To effectively learn the invertible grayscale, we introduce the wavelet transformation into a UNet-like INN architecture, and further present a quantization embedding to prevent the information omission in format conversion, which improves the generalizability of the framework in real-world scenarios. Extensive experiments on three widely used benchmarks demonstrate that the proposed method achieves a state-of-the-art performance in terms of both qualitative and quantitative results, which shows its superiority in multimedia communication and storage systems.
可逆图像去色是一种有用的颜色压缩技术,可降低多媒体系统中的成本。可逆去色旨在从彩色图像合成逼真的灰度图像,这些灰度图像可以完全恢复到原始彩色版本。在本文中,我们提出了一种新颖的颜色压缩方法,使用可逆神经网络(INN)来生成可逆灰度图像。我们的关键思想是从彩色图像中分离颜色信息,并通过INN将颜色信息编码为一组高斯分布的潜在变量。通过这种方式,我们迫使在灰度生成中丢失的颜色信息与输入彩色图像无关。因此,通过对一组新的高斯分布变量进行随机重新采样,连同合成的灰度图像,通过INN的反向映射,可以有效地恢复原始彩色版本。为了有效地学习可逆灰度,我们将小波变换引入类似U-Net的INN架构,并进一步提出量化嵌入以防止格式转换中的信息遗漏,这提高了该框架在实际场景中的通用性。在三个广泛使用的基准上进行的大量实验表明,所提出的方法在定性和定量结果方面都达到了当前的先进性能,这表明了其在多媒体通信和存储系统中的优越性。