Suppr超能文献

I2C: Invertible Continuous Codec for High-Fidelity Variable-Rate Image Compression.

作者信息

Cai Shilv, Chen Liqun, Zhang Zhijun, Zhao Xiangyun, Zhou Jiahuan, Peng Yuxin, Yan Luxin, Zhong Sheng, Zou Xu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Jun;46(6):4262-4279. doi: 10.1109/TPAMI.2024.3356557. Epub 2024 May 7.

Abstract

Lossy image compression is a fundamental technology in media transmission and storage. Variable-rate approaches have recently gained much attention to avoid the usage of a set of different models for compressing images at different rates. During the media sharing, multiple re-encodings with different rates would be inevitably executed. However, existing Variational Autoencoder (VAE)-based approaches would be readily corrupted in such circumstances, resulting in the occurrence of strong artifacts and the destruction of image fidelity. Based on the theoretical findings of preserving image fidelity via invertible transformation, we aim to tackle the issue of high-fidelity fine variable-rate image compression and thus propose the Invertible Continuous Codec (I2C). We implement the I2C in a mathematical invertible manner with the core Invertible Activation Transformation (IAT) module. I2C is constructed upon a single-rate Invertible Neural Network (INN) based model and the quality level (QLevel) would be fed into the IAT to generate scaling and bias tensors. Extensive experiments demonstrate that the proposed I2C method outperforms state-of-the-art variable-rate image compression methods by a large margin, especially after multiple continuous re-encodings with different rates, while having the ability to obtain a very fine variable-rate control without any performance compromise.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验