Jaumaux Pauline, Yang Xu, Zhang Bao, Safaei Javad, Tang Xiao, Zhou Dong, Wang Chunsheng, Wang Guoxiu
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19965-19973. doi: 10.1002/anie.202107389. Epub 2021 Jul 26.
Water-in-salt (WIS) electrolytes using super-concentrated organic lithium (Li) salts are of interest for aqueous Li-ion batteries. However, the high salt cost, high viscosity, poor wettability, and environmental hazards remain a great challenge. Herein, we present a localized water-in-salt (LWIS) electrolyte based on low-cost lithium nitrate (LiNO ) salt and 1,5-pentanediol (PD) as inert diluent. The addition of PD maintains the solvation structure of the WIS electrolyte, improves the electrolyte stability via hydrogen-bonding interactions with water and NO molecules, and reduces the total salt concentration. By in situ gelling the LWIS electrolyte with tetraethylene glycol diacrylate (TEGDA) monomer, the electrolyte stability window can be further expanded to 3.0 V. The as-developed Mo S |LWIS gel electrolyte|LiMn O (LMO) batteries delivered outstanding cycling performance with an average Coulombic efficiency of 98.53 % after 250 cycles at 1 C.
使用超浓缩有机锂盐的盐包水(WIS)电解质在水系锂离子电池中备受关注。然而,高盐成本、高粘度、润湿性差以及环境危害仍然是巨大的挑战。在此,我们展示了一种基于低成本硝酸锂(LiNO₃)盐和1,5 - 戊二醇(PD)作为惰性稀释剂的局部盐包水(LWIS)电解质。PD的添加维持了WIS电解质的溶剂化结构,通过与水和NO₃⁻分子的氢键相互作用提高了电解质稳定性,并降低了总盐浓度。通过用二缩三乙二醇二丙烯酸酯(TEGDA)单体对LWIS电解质进行原位凝胶化,电解质稳定窗口可进一步扩大至3.0 V。所开发的MoS₂|LWIS凝胶电解质|LiMn₂O₄(LMO)电池展现出出色的循环性能,在1 C下250次循环后平均库仑效率为98.53%。