Suppr超能文献

氧化铜/石墨相氮化碳复合材料通过增强过一硫酸盐活化降解双酚 A:Cu-O 共价键的作用机制。

Copper oxide/graphitic carbon nitride composite for bisphenol a degradation by boosted peroxymonosulfate activation: Mechanism of Cu-O covalency governs.

机构信息

School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China.

School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.

出版信息

J Colloid Interface Sci. 2021 Dec;603:85-93. doi: 10.1016/j.jcis.2021.06.099. Epub 2021 Jun 18.

Abstract

Surface structure can govern heterogeneous catalysis, resulting in its critical role in nonradical reactions. Here, we explored whether Cu-O covalency plays a critical role in controlling the inherent properties of copper oxide/graphitic carbon nitride (CuO-CN). Experiments and theoretical calculations show that, in contrast to the traditional concept of low-valent metal control activity, surface modification enlarges Cu-O covalency, and high-valent copper species at the surface easily bind peroxymonosulfate (PMS, (HSO)) anions. Therefore, optimized CuO-CN corresponds to a 14.8-fold higher kinetic reaction rate (0.10392 min) for PMS activation and pollutant degradation over those of unoptimized CuO-CN. Based on two-dimensional Fourier transform infrared correlation spectroscopy (2D-FT-IR-COS), Cu-O was determined to be the main active site. Cu-O is more active than other groups and acts before other groups. Benefiting from this electron transfer mechanism, CuO-CN shows good environmental tolerance (pH, anions, humic acid and actual water bodies such as tap water and groundwater). The established empirical kinetic model shows a strong linear correlation with the experimental kinetic reaction rate (> 0.94). CuO-CN/PMS can degrade organic pollutants efficiently for up to 30 days in a filter reactor. This work provides an understanding of the key role of the surface electronic structure in the nonradical activation of PMS and may provide support for improving the design of PMS catalysts.

摘要

表面结构可以控制多相催化,从而在非自由基反应中起着关键作用。在这里,我们探索了 Cu-O 共价键是否在控制氧化铜/石墨相氮化碳 (CuO-CN) 的固有性质方面起着关键作用。实验和理论计算表明,与传统的低价金属控制活性的概念相反,表面修饰会增大 Cu-O 共价键,表面的高价铜物种容易与过一硫酸盐(PMS,(HSO₅))阴离子结合。因此,优化后的 CuO-CN 在过一硫酸盐(PMS)激活和污染物降解方面的动力学反应速率(0.10392 min)比未经优化的 CuO-CN 高 14.8 倍。基于二维傅里叶变换相关红外光谱(2D-FT-IR-COS),确定 Cu-O 是主要的活性位。Cu-O 比其他基团更活跃,并且在其他基团之前起作用。受益于这种电子转移机制,CuO-CN 表现出良好的环境耐受性(pH 值、阴离子、腐殖酸以及实际水体如自来水和地下水)。所建立的经验动力学模型与实验动力学反应速率具有很强的线性相关性(>0.94)。CuO-CN/PMS 可以在过滤反应器中高效降解有机污染物,长达 30 天。这项工作提供了对表面电子结构在 PMS 非自由基激活中关键作用的理解,并可能为改进 PMS 催化剂的设计提供支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验