Bassignana Giulia, Fransson Jennifer, Henry Vincent, Colliot Olivier, Zujovic Violetta, De Vico Fallani Fabrizio
Sorbonne University, UPMC Univ Paris 06, Inserm U-1127, CNRS UMR-7225, Institut du Cerveau et de la Moelle Epinière, Hopital Pitié-Salpêtrière, Paris, France.
Netw Neurosci. 2021 Apr 27;5(2):337-357. doi: 10.1162/netn_a_00180. eCollection 2021.
Identifying the nodes able to drive the state of a network is crucial to understand, and eventually control, biological systems. Despite recent advances, such identification remains difficult because of the huge number of equivalent controllable configurations, even in relatively simple networks. Based on the evidence that in many applications it is essential to test the ability of individual nodes to control a specific target subset, we develop a fast and principled method to identify controllable driver-target configurations in sparse and directed networks. We demonstrate our approach on simulated networks and experimental gene networks to characterize macrophage dysregulation in human subjects with multiple sclerosis.
识别能够驱动网络状态的节点对于理解并最终控制生物系统至关重要。尽管最近取得了进展,但由于存在大量等效的可控配置,即使在相对简单的网络中,这种识别仍然很困难。基于在许多应用中测试单个节点控制特定目标子集能力至关重要的证据,我们开发了一种快速且有原则的方法来识别稀疏和有向网络中的可控驱动-目标配置。我们在模拟网络和实验基因网络上展示了我们的方法,以表征多发性硬化症患者巨噬细胞的失调情况。