外生菌电子/质子转移机制的理性设计。
Rational design of electron/proton transfer mechanisms in the exoelectrogenic bacteria Geobacter sulfurreducens.
机构信息
UCIBIO-Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.
出版信息
Biochem J. 2021 Jul 30;478(14):2871-2887. doi: 10.1042/BCJ20210365.
The redox potential values of cytochromes can be modulated by the protonation/deprotonation of neighbor groups (redox-Bohr effect), a mechanism that permits the proteins to couple electron/proton transfer. In the respiratory chains, this effect is particularly relevant if observed in the physiological pH range, as it may contribute to the electrochemical gradient for ATP synthesis. A constitutively produced family of five triheme cytochromes (PpcA-E) from the bacterium Geobacter sulfurreducens plays a crucial role in extracellular electron transfer, a hallmark that permits this bacterium to be explored for several biotechnological applications. Two members of this family (PpcA and PpcD) couple electron/proton transfer in the physiological pH range, a feature not shared with PpcB and PpcE. That ability is crucial for G. sulfurreducens' growth in Fe(III)-reducing habitats since extra contributors to the electrochemical gradient are needed. It was postulated that the redox-Bohr effect is determined by the nature of residue 6, a leucine in PpcA/PpcD and a phenylalanine in PpcB/PpcE. To confirm this hypothesis, Phe6 was replaced by leucine in PpcB and PpcE. The functional properties of these mutants were investigated by NMR and UV-visible spectroscopy to assess their capability to couple electron/proton transfer in the physiological pH range. The results obtained showed that the mutants have an increased redox-Bohr effect and are now capable of coupling electron/proton transfer. This confirms the determinant role of the nature of residue 6 in the modulation of the redox-Bohr effect in this family of cytochromes, opening routes to engineer Geobacter cells with improved biomass production.
细胞色素的氧化还原电位值可以通过相邻基团的质子化/去质子化(氧化还原-Bohr 效应)来调节,这种机制允许蛋白质偶联电子/质子转移。在呼吸链中,如果在生理 pH 范围内观察到这种效应,它特别相关,因为它可能有助于 ATP 合成的电化学梯度。来自细菌 Geobacter sulfurreducens 的一组五种三叶细胞色素(PpcA-E)是细胞外电子转移的关键,这一特征允许该细菌被探索用于几种生物技术应用。该家族的两个成员(PpcA 和 PpcD)在生理 pH 范围内偶联电子/质子转移,而 PpcB 和 PpcE 则不具有这种特性。这种能力对于 G. sulfurreducens 在 Fe(III)还原生境中的生长至关重要,因为需要额外的电化学梯度贡献者。据推测,氧化还原-Bohr 效应取决于残基 6 的性质,PpcA/PpcD 中的亮氨酸和 PpcB/PpcE 中的苯丙氨酸。为了证实这一假设,用亮氨酸取代 PpcB 和 PpcE 中的苯丙氨酸。通过 NMR 和紫外可见光谱研究这些突变体的功能特性,以评估它们在生理 pH 范围内偶联电子/质子转移的能力。结果表明,突变体具有增加的氧化还原-Bohr 效应,现在能够偶联电子/质子转移。这证实了残基 6 的性质在调节该细胞色素家族的氧化还原-Bohr 效应中起决定性作用,为工程化具有提高生物质产量的 Geobacter 细胞开辟了途径。