Brinkmeier Alexander, Schulz Roland A, Buchhorn Moritz, Spyra Can-Jerome, Dechert Sebastian, Demeshko Serhiy, Krewald Vera, Meyer Franc
Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany.
Fachbereich Chemie, Theoretische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
J Am Chem Soc. 2021 Jul 14;143(27):10361-10366. doi: 10.1021/jacs.1c04316. Epub 2021 Jun 30.
Superoxo complexes of copper are primary adducts in several O-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cu(O) species is challenging. Recent work ( , , 9831; , , 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species () together with the structure of its 1e reduced peroxo congener (; a rare -μ-1,2-peroxo dicopper(II) complex). Interconversion of and occurs at low potential (-0.58 V vs Fc/Fc) and is reversible both chemically and electrochemically. Comparison of metric parameters ((O-O) = 1.441(2) Å for vs 1.329(7) Å for ) and of spectroscopic signatures (ν̃(O-O) = 793 cm for vs 1073 cm for ) reflects that the redox process occurs at the bridging O-derived unit. The Cu-O-Cu complex has an = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both and . These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e interconversion of μ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cu/O chemistry.
铜的超氧配合物是几种含铜金属酶中O-活化的主要加合物,以及其他铜介导的氧化和氧合反应中的主要加合物。然而,由于它们内在的高反应活性,分离Cu(O)物种具有挑战性。最近的工作(,,9831;,,12682)建立了二铜(II)超氧配合物H原子夺取反应性的基本热化学数据,但到目前为止,这些重要中间体的结构表征仍然缺乏。在这里,我们报告了首例超氧二铜(II)物种()及其1e还原过氧同系物(;一种罕见的-μ-1,2-过氧二铜(II)配合物)的晶体结构测定。和之间的相互转化在低电位下发生(相对于Fc/Fc为-0.58 V),并且在化学和电化学上都是可逆的。度量参数的比较(对于,(O-O)=1.441(2) Å,对于为1.329(7) Å)和光谱特征的比较(对于,ν̃(O-O)=793 cm,对于为1073 cm)反映出氧化还原过程发生在桥连的O衍生单元上。根据磁性和EPR数据,Cu-O-Cu配合物具有S = 1/2的自旋基态,这与密度泛函理论计算结果一致。计算进一步表明,对于和,与Cu-O-O-Cu二面角变化相关的电位都很浅。这些发现为μ-1,2-超氧/过氧二铜(II)对动力学上容易的1e相互转化的低重组能提供了结构基础,并且为全面研究铜/氧化学中的这些关键中间体打开了大门。