Suppr超能文献

相似文献

1
Blind Primed Supervised (BLIPS) Learning for MR Image Reconstruction.
IEEE Trans Med Imaging. 2021 Nov;40(11):3113-3124. doi: 10.1109/TMI.2021.3093770. Epub 2021 Oct 27.
2
Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
Med Phys. 2023 May;50(5):2939-2960. doi: 10.1002/mp.16182. Epub 2023 Jan 17.
3
Unified Supervised-Unsupervised (SUPER) Learning for X-Ray CT Image Reconstruction.
IEEE Trans Med Imaging. 2021 Nov;40(11):2986-3001. doi: 10.1109/TMI.2021.3095310. Epub 2021 Oct 27.
4
MR image reconstruction from highly undersampled k-space data by dictionary learning.
IEEE Trans Med Imaging. 2011 May;30(5):1028-41. doi: 10.1109/TMI.2010.2090538. Epub 2010 Nov 1.
5
Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.
Phys Med Biol. 2015 Jul 21;60(14):5359-80. doi: 10.1088/0031-9155/60/14/5359. Epub 2015 Jun 25.
7
Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice.
IEEE Trans Biomed Eng. 2024 Feb;71(2):388-399. doi: 10.1109/TBME.2023.3300090. Epub 2024 Jan 19.
8
9
Magnetic resonance parameter mapping using model-guided self-supervised deep learning.
Magn Reson Med. 2021 Jun;85(6):3211-3226. doi: 10.1002/mrm.28659. Epub 2021 Jan 19.
10
Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes.
Comput Biol Med. 2023 Dec;167:107610. doi: 10.1016/j.compbiomed.2023.107610. Epub 2023 Oct 20.

本文引用的文献

1
Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning.
IEEE Signal Process Mag. 2020 Jan;37(1):54-68. doi: 10.1109/msp.2019.2950432. Epub 2020 Jan 17.
2
Total Deep Variation: A Stable Regularization Method for Inverse Problems.
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9163-9180. doi: 10.1109/TPAMI.2021.3124086. Epub 2022 Nov 7.
3
An unsupervised deep learning method for multi-coil cine MRI.
Phys Med Biol. 2020 Dec 2;65(23):235041. doi: 10.1088/1361-6560/abaffa.
4
Wasserstein GANs for MR Imaging: From Paired to Unpaired Training.
IEEE Trans Med Imaging. 2021 Jan;40(1):105-115. doi: 10.1109/TMI.2020.3022968. Epub 2020 Dec 29.
5
Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
Magn Reson Med. 2020 Dec;84(6):3172-3191. doi: 10.1002/mrm.28378. Epub 2020 Jul 2.
6
On instabilities of deep learning in image reconstruction and the potential costs of AI.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30088-30095. doi: 10.1073/pnas.1907377117. Epub 2020 May 11.
7
Image Recovery via Transform Learning and Low-Rank Modeling: The Power of Complementary Regularizers.
IEEE Trans Image Process. 2020 Mar 19. doi: 10.1109/TIP.2020.2980753.
8
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
10
Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1488-1497. doi: 10.1109/TMI.2018.2820120.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验