IEEE Trans Med Imaging. 2021 Nov;40(11):3113-3124. doi: 10.1109/TMI.2021.3093770. Epub 2021 Oct 27.
This paper examines a combined supervised-unsupervised framework involving dictionary-based blind learning and deep supervised learning for MR image reconstruction from under-sampled k-space data. A major focus of the work is to investigate the possible synergy of learned features in traditional shallow reconstruction using adaptive sparsity-based priors and deep prior-based reconstruction. Specifically, we propose a framework that uses an unrolled network to refine a blind dictionary learning-based reconstruction. We compare the proposed method with strictly supervised deep learning-based reconstruction approaches on several datasets of varying sizes and anatomies. We also compare the proposed method to alternative approaches for combining dictionary-based methods with supervised learning in MR image reconstruction. The improvements yielded by the proposed framework suggest that the blind dictionary-based approach preserves fine image details that the supervised approach can iteratively refine, suggesting that the features learned using the two methods are complementary.
本文研究了一种结合监督式和非监督式的框架,涉及基于字典的盲学习和深度监督学习,用于从欠采样 k 空间数据中重建磁共振成像。本工作的一个重点是研究在传统的基于自适应稀疏性的先验和基于深度先验的重建中,学习到的特征可能产生的协同作用。具体来说,我们提出了一种使用展开网络来改进基于盲字典学习的重建的框架。我们在几个不同大小和解剖结构的数据集上,将所提出的方法与严格的基于监督的深度学习重建方法进行了比较。我们还将所提出的方法与在磁共振图像重建中结合基于字典的方法和监督学习的替代方法进行了比较。所提出的框架产生的改进表明,基于盲字典的方法可以保留精细的图像细节,而监督方法可以迭代地进行细化,这表明两种方法所学习到的特征是互补的。