Suppr超能文献

深度学习在图像重建中的不稳定性及人工智能的潜在代价

On instabilities of deep learning in image reconstruction and the potential costs of AI.

机构信息

Department of Mathematics, University of Oslo, 0316 Oslo, Norway.

Instituto de Telecomunicações, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30088-30095. doi: 10.1073/pnas.1907377117. Epub 2020 May 11.

Abstract

Deep learning, due to its unprecedented success in tasks such as image classification, has emerged as a new tool in image reconstruction with potential to change the field. In this paper, we demonstrate a crucial phenomenon: Deep learning typically yields unstable methods for image reconstruction. The instabilities usually occur in several forms: 1) Certain tiny, almost undetectable perturbations, both in the image and sampling domain, may result in severe artefacts in the reconstruction; 2) a small structural change, for example, a tumor, may not be captured in the reconstructed image; and 3) (a counterintuitive type of instability) more samples may yield poorer performance. Our stability test with algorithms and easy-to-use software detects the instability phenomena. The test is aimed at researchers, to test their networks for instabilities, and for government agencies, such as the Food and Drug Administration (FDA), to secure safe use of deep learning methods.

摘要

深度学习在图像分类等任务中取得了前所未有的成功,它已经成为图像重建的一种新工具,有可能改变这个领域。在本文中,我们展示了一个关键现象:深度学习通常会产生图像重建不稳定的方法。这些不稳定性通常以几种形式出现:1)图像和采样域中某些微小的、几乎难以察觉的扰动,可能会导致重建中出现严重的伪影;2)小的结构变化,例如肿瘤,可能不会被重建图像捕捉到;3)(一种反直觉的不稳定性类型)更多的样本可能会导致性能下降。我们使用算法和易于使用的软件进行的稳定性测试检测到了这些不稳定性现象。该测试旨在供研究人员测试他们的网络是否存在不稳定性,以及供政府机构(如食品和药物管理局(FDA))确保深度学习方法的安全使用。

相似文献

3
Solving Inverse Problems With Deep Neural Networks - Robustness Included?使用深度神经网络解决逆问题——包括鲁棒性吗?
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):1119-1134. doi: 10.1109/TPAMI.2022.3148324. Epub 2022 Dec 5.
7
Learning Raw Image Reconstruction-Aware Deep Image Compressors.学习感知原始图像重建的深度图像压缩器。
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):1013-1019. doi: 10.1109/TPAMI.2019.2903062. Epub 2019 Mar 4.

引用本文的文献

10
Information-Theoretic Analysis of Multimodal Image Translation.多模态图像翻译的信息论分析
IEEE Trans Med Imaging. 2025 Aug;44(8):3210-3221. doi: 10.1109/TMI.2025.3559823.

本文引用的文献

1
MR Image Reconstruction Using Deep Density Priors.基于深度密度先验的磁共振图像重建。
IEEE Trans Med Imaging. 2019 Jul;38(7):1633-1642. doi: 10.1109/TMI.2018.2887072. Epub 2018 Dec 17.
6
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
7
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Compressive fluorescence microscopy for biological and hyperspectral imaging.压缩荧光显微镜用于生物和高光谱成像。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1679-87. doi: 10.1073/pnas.1119511109. Epub 2012 Jun 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验