Namen Austin Van, Jandhyala Sidhartha, Jordan Tomas, Luke Geoffrey P
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3497-3506. doi: 10.1109/TUFFC.2021.3093828. Epub 2021 Nov 23.
Superheated perfluorocarbon nanodroplets are emerging ultrasound imaging contrast agents that boast biocompatible components, unique phase-change dynamics, and therapeutic loading capabilities. Upon exposure to a sufficiently high-intensity pulse of acoustic energy, the nanodroplet's perfluorocarbon core undergoes a liquid-to-gas phase change and becomes an echogenic microbubble, providing ultrasound contrast. The controllable activation leads to high-contrast images, while the small size of the nanodroplets promotes longer circulation times and better in vivo stability. One drawback, however, is that the nanodroplets can only be vaporized a single time, limiting their versatility. Recently, we and others have addressed this issue by using a perfluorohexane core, which has a boiling point above body temperature. Thus after vaporization, the microbubbles recondense back into their stable nanodroplet form. Previous work with perfluorohexane nanodroplets relied on optical activation via pulsed laser absorption of an encapsulated dye. This strategy limits the imaging depth and temporal resolution of the method. In this study, we overcome these limitations by demonstrating acoustic droplet vaporization with 1.1-MHz high-intensity focused ultrasound (HIFU). A short-duration, high-amplitude pulse of focused ultrasound provides a sufficiently strong peak negative pressure to initiate vaporization. A custom imaging sequence was developed to enable the synchronization of a HIFU transducer and a linear array imaging transducer. We show a visualization of repeated acoustic activation of perfluorohexane nanodroplets in polyacrylamide tissue-mimicking phantoms. We further demonstrate the detection of hundreds of vaporization events from individual nanodroplets with activation thresholds well below the tissue cavitation limit. Overall, this approach has the potential to result in reliable and repeatable contrast-enhanced ultrasound imaging at clinically relevant depths.
过热全氟碳纳米液滴是一种新兴的超声成像造影剂,具有生物相容性成分、独特的相变动力学和治疗负载能力。当暴露于足够高强度的声能脉冲时,纳米液滴的全氟碳核心会经历从液态到气态的相变,变成一个产生回声的微泡,从而提供超声造影。可控的激活导致高对比度图像,而纳米液滴的小尺寸促进了更长的循环时间和更好的体内稳定性。然而,一个缺点是纳米液滴只能被汽化一次,这限制了它们的多功能性。最近,我们和其他人通过使用沸点高于体温的全氟己烷核心解决了这个问题。因此,在汽化后,微泡会重新凝结回其稳定的纳米液滴形式。以前关于全氟己烷纳米液滴的工作依赖于通过封装染料的脉冲激光吸收进行光学激活。这种策略限制了该方法的成像深度和时间分辨率。在本研究中,我们通过展示使用1.1-MHz高强度聚焦超声(HIFU)进行声滴汽化来克服这些限制。短持续时间、高振幅的聚焦超声脉冲提供了足够强的峰值负压来启动汽化。开发了一种定制的成像序列,以实现HIFU换能器和线性阵列成像换能器的同步。我们展示了在聚丙烯酰胺组织模拟体模中全氟己烷纳米液滴重复声激活的可视化。我们进一步证明了在激活阈值远低于组织空化极限的情况下,能够检测到单个纳米液滴的数百次汽化事件。总体而言,这种方法有可能在临床相关深度实现可靠且可重复的超声造影成像。