高频癫痫网络的交叉频耦合节点可预测癫痫患者的手术疗效。

High-Frequency Hubs of the Ictal Cross-Frequency Coupling Network Predict Surgical Outcome in Epilepsy Patients.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:1290-1299. doi: 10.1109/TNSRE.2021.3093703. Epub 2021 Jul 12.

Abstract

Seizure generation is thought to be a process driven by epileptogenic networks; thus, network analysis tools can help determine the efficacy of epilepsy treatment. Studies have suggested that low-frequency (LF) to high-frequency (HF) cross-frequency coupling (CFC) is a useful biomarker for localizing epileptogenic tissues. However, it remains unclear whether the LF or HF coordinated CFC network hubs are more critical in determining the treatment outcome. We hypothesize that HF hubs are primarily responsible for seizure dynamics. Stereo-electroencephalography (SEEG) recordings of 36 seizures from 16 intractable epilepsy patients were analyzed. We propose a new approach to model the temporal-spatial-spectral dynamics of CFC networks. Graph measures are then used to characterize the HF and LF hubs. In the patient group with Engel Class (EC) I outcome, the strength of HF hubs was significantly higher inside the resected regions during the early and middle stages of seizure, while such a significant difference was not observed in the EC III group and only for the early stage in the EC II group. For the LF hubs, a significant difference was identified at the late stage and only in the EC I group. Our findings suggest that HF hubs increase at early and middle stages of the ictal interval while LF hubs increase activity at the late stages. In addition, HF hubs can predict treatment outcomes more precisely, compared to the LF hubs of the CFC network. The proposed method promises to identify more accurate targets for surgical interventions or neuromodulation therapies.

摘要

癫痫发作的产生被认为是由致痫性网络驱动的过程;因此,网络分析工具可以帮助确定癫痫治疗的效果。研究表明,低频 (LF) 到高频 (HF) 的跨频耦合 (CFC) 是定位致痫组织的有用生物标志物。然而,尚不清楚 LF 或 HF 协调的 CFC 网络枢纽在确定治疗结果方面更为关键。我们假设 HF 枢纽主要负责癫痫发作的动力学。分析了 16 例耐药性癫痫患者的 36 次癫痫发作的立体脑电图 (SEEG) 记录。我们提出了一种新方法来模拟 CFC 网络的时空频谱动态。然后使用图度量来描述 HF 和 LF 枢纽。在 Engel 分级 (EC) I 结果的患者组中,HF 枢纽的强度在癫痫发作的早期和中期在切除区域内显著更高,而在 EC III 组中未观察到这种显著差异,并且仅在 EC II 组的早期阶段观察到这种差异。对于 LF 枢纽,在晚期仅在 EC I 组中发现了显著差异。我们的研究结果表明,HF 枢纽在癫痫发作间隔的早期和中期增加,而 LF 枢纽在晚期增加活动。此外,与 CFC 网络的 LF 枢纽相比,HF 枢纽可以更准确地预测治疗结果。所提出的方法有望确定更准确的手术干预或神经调节治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索