Suppr超能文献

利用卷积神经网络对致痫组织中的交叉频率耦合模式进行分类。

Classifying cross-frequency coupling pattern in epileptogenic tissues by convolutional neural network.

作者信息

Wang Zeyu, Li Chunsheng

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3440-3443. doi: 10.1109/EMBC44109.2020.9175273.

Abstract

The phase-amplitude coupling in EEG signal of different frequencies is considered as a useful biomarker in delineating epileptogenic tissues, but some physiological processes can also generate phase-amplitude coupling pattern, such as memory process. Current analysis on cross-frequency coupling (CFC) feature is mostly based on extracting the strength of coupling but not coupling patterns in frequency-frequency domain. In this paper, we proposed a method for identifying epileptogenic tissue using convolutional neural networks (CNN) based on CFC pattern. Stereo-electroencephalograph (SEEG) from six patients with intractable epilepsy were used in this analysis. First, modulation indexes (MIs) were calculated using a moving window for each channel across seizures. Then those MIs were marked as inside epileptogenic zone (EZ) or outside EZ based on the surgical resection area. CNN was trained by those two-dimensional coupling patterns and tested by leave-one-out method. The receiver operating characteristics (ROC) curve was further generated. The results showed that average area-under-curve (AUC) performance reached 0.88. The sensitivity was 0.81, and the specificity was 0.79. Those results suggest that the CFC pattern can be used to identify SEEG channels in the epileptogenic region using the CNN.Clinical Relevance- This method has the potential to be used as an analytical tool for neurologists to identify epileptogenic brain tissues.

摘要

不同频率脑电图信号中的相位-振幅耦合被认为是描绘致痫组织的一种有用生物标志物,但一些生理过程也会产生相位-振幅耦合模式,比如记忆过程。目前对交叉频率耦合(CFC)特征的分析大多基于提取耦合强度,而非频率-频域中的耦合模式。在本文中,我们提出了一种基于CFC模式,使用卷积神经网络(CNN)识别致痫组织的方法。本分析使用了6例难治性癫痫患者的立体脑电图(SEEG)。首先,对发作期间每个通道使用移动窗口计算调制指数(MIs)。然后根据手术切除区域将这些MIs标记为致痫区(EZ)内或EZ外。通过这些二维耦合模式训练CNN,并采用留一法进行测试。进一步生成受试者工作特征(ROC)曲线。结果显示,平均曲线下面积(AUC)性能达到0.88。灵敏度为0.81,特异性为0.79。这些结果表明,CFC模式可用于使用CNN识别致痫区域中的SEEG通道。临床相关性——该方法有潜力作为神经科医生识别致痫脑组织的分析工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验