Suppr超能文献

实验进化改善了酿酒酵母的线粒体基因组质量控制并延长了其复制寿命。

Experimental evolution improves mitochondrial genome quality control in Saccharomyces cerevisiae and extends its replicative lifespan.

作者信息

Amine Ahmed A A, Liao Chia-Wei, Hsu Po-Chen, Opoc Florica J G, Leu Jun-Yi

机构信息

Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11529, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.

Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.

出版信息

Curr Biol. 2021 Aug 23;31(16):3663-3670.e4. doi: 10.1016/j.cub.2021.06.026. Epub 2021 Jun 29.

Abstract

The mitochondrion is an ancient endosymbiotic organelle that performs many essential functions in eukaryotic cells. Mitochondrial impairment often results in physiological defects or diseases. Since most mitochondrial genes have been copied into the nuclear genome during evolution, the regulatory and interaction mechanisms between the mitochondrial and nuclear genomes are very complex. Multiple mechanisms, including antioxidant, DNA repair, mitophagy, and mitochondrial biogenesis pathways, have been shown to monitor the quality and quantity of mitochondria. Nonetheless, it remains unclear if these pathways can be further modified to enhance mitochondrial stability. Previously, experimental evolution has been used to adapt cells to novel growth conditions. By analyzing the resulting evolved populations, insights have been gained into the underlying molecular mechanisms. Here, we experimentally evolved yeast cells under conditions that selected for efficient respiration while continuously assaulting the mitochondrial genome (mtDNA) with ethidium bromide (EtBr). We found that the ability to maintain functional mtDNA was enhanced in most of the evolved lines when challenged with mtDNA-damaging reagents. We identified mutations of the mitochondrial NADH dehydrogenase NDE1 in most of the evolved lines, but other pathways are also involved. Finally, we show that cells displaying enhanced mtDNA retention also exhibit a prolonged replicative lifespan. Our work reveals potential evolutionary trajectories by which cells can maintain functional mitochondria in response to mtDNA stress, as well as the physiological implications of such adaptations.

摘要

线粒体是一种古老的内共生细胞器,在真核细胞中执行许多重要功能。线粒体损伤通常会导致生理缺陷或疾病。由于大多数线粒体基因在进化过程中已被复制到核基因组中,线粒体基因组与核基因组之间的调控和相互作用机制非常复杂。多种机制,包括抗氧化、DNA修复、线粒体自噬和线粒体生物发生途径,已被证明可监测线粒体的质量和数量。尽管如此,这些途径是否可以进一步修饰以增强线粒体稳定性仍不清楚。此前,实验进化已被用于使细胞适应新的生长条件。通过分析由此产生的进化群体,人们对潜在的分子机制有了深入了解。在这里,我们在选择高效呼吸的条件下对酵母细胞进行实验进化,同时用溴化乙锭(EtBr)持续攻击线粒体基因组(mtDNA)。我们发现,当用mtDNA损伤试剂进行挑战时,大多数进化株系维持功能性mtDNA的能力增强。我们在大多数进化株系中鉴定出线粒体NADH脱氢酶NDE1的突变,但其他途径也有涉及。最后,我们表明,表现出增强的mtDNA保留能力的细胞也具有延长的复制寿命。我们的工作揭示了细胞在应对mtDNA应激时维持功能性线粒体的潜在进化轨迹,以及这种适应的生理意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验