Van Poucke Kris, Haegeman Annelies, Goedefroit Thomas, Focquet Fran, Leus Leen, Jung Marília Horta, Nave Corina, Redondo Miguel Angel, Husson Claude, Kostov Kaloyan, Lyubenova Aneta, Christova Petya, Chandelier Anne, Slavov Slavcho, de Cock Arthur, Bonants Peter, Werres Sabine, Palau Jonàs Oliva, Marçais Benoit, Jung Thomas, Stenlid Jan, Ruttink Tom, Heungens Kurt
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Burg. Van Gansberghelaan 96, 9820, Merelbeke, Belgium.
Phytophthora Research Centre (PRC), Mendel University, 613 00, Brno, Czech Republic.
IMA Fungus. 2021 Jul 1;12(1):16. doi: 10.1186/s43008-021-00068-w.
The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
疫霉属包含许多在经济和生态方面具有重要意义的植物病原体。此前已在12个系统发育分支中的至少6个分支中鉴定出杂交种。与它们的亲本相比,这些杂交种可能会感染更广泛的寄主范围并表现出更强的活力。因此,疫霉杂交种对农业以及自然生态系统构成了严重威胁。因此,早期正确鉴定杂交种对于充分的植物保护至关重要,但这受到形态学和传统分子方法局限性的阻碍。杂交种的鉴定在进化研究中也很重要,因为杂交种在系统发育树中的定位可能会导致次优的拓扑结构。为了改进杂交种的鉴定,我们对614个疫霉分离株的全属样本结合了测序基因分型(GBS)和基因组大小估计。基于位点和等位基因计数的分析,特别是基于物种特异性位点和基因组大小估计的组合分析,使我们能够确认并表征27个先前描述的杂交种,并发现16个新的杂交种。我们的方法对于以前所未有的分辨率进行物种鉴定也很有价值,并且进一步允许对错误鉴定的分离株进行正确命名。我们使用基于串联和合并的系统发育基因组学方法,利用140个非杂交疫霉分离株的GBS数据构建了一个可靠的系统发育树。随后在这个系统发育树中将杂交种与其亲本联系起来。在本研究中,我们展示了两种经过验证的技术(GBS和流式细胞术)在以相对低成本但高分辨率鉴定杂交种及其系统发育关系方面的应用。