Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India.
J Neurosci. 2021 Aug 11;41(32):6822-6835. doi: 10.1523/JNEUROSCI.0226-21.2021. Epub 2021 Jun 30.
The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resulting from postmitotic loss of LHX2 is vastly distinct from that seen when LHX2 is lost in progenitors. These results demonstrate a mechanism operating in subplate progenitors that has profound consequences on the growth of thalamocortical axons into the cortex. Thalamocortical nerves carry sensory information from the periphery to the cortex. When they first grow into the embryonic cortex, they "wait" at the subplate, a structure critical for the guidance and eventual connectivity of thalamic axons with their cortical targets. How the properties of subplate neurons are regulated is unclear. We report that transcription factor LHX2 is required in the progenitor "mother" cells of the cortical primordium when they are producing their "daughter" subplate neurons, in order for the thalamocortical pathway to wait at the subplate. Without LHX2 function in subplate progenitors, thalamocortical axons grow past the subplate, entering the cortical plate prematurely. This is followed by their eventual attrition and, consequently, a profound loss of sensory innervation of the mature cortex.
皮质基板对于调节丘脑皮质感觉传入纤维进入皮质至关重要。这些传入纤维在小鼠胚胎第 15.5 天(E)到达基板,但“等待”几天后,在出生后进入皮质板。我们报告说,当转录因子 LHX2 在 E11.5 皮质祖细胞中丢失时,这些祖细胞产生基板神经元,丘脑皮质传入纤维表现出过早的、旺盛的内生长到 E15.5 皮质中。胚胎突变基板神经元在皮质板下方正确定位,但在等待期间,它们显示出改变的转录组和不成熟的电生理特性。在这些皮质特异性突变体中,感觉丘脑显示萎缩,并且在出生后第 7 天,皮质的感觉神经支配几乎消除,导致躯体感觉桶丧失。引人注目的是,如果 LHX2 在有丝分裂后基板神经元中丢失,则不会出现这些表型,并且由于 LHX2 在有丝分裂后丢失而导致基板中转录组失调与 LHX2 在祖细胞中丢失时所见有很大的不同。这些结果表明,在基板祖细胞中存在一种机制,对丘脑皮质轴突进入皮质的生长有深远的影响。丘脑皮质神经将来自外周的感觉信息传递到皮质。当它们第一次生长到胚胎皮质中时,它们在基板处“等待”,基板是丘脑轴突与皮质靶区连接的指导和最终连接的关键结构。基板神经元的特性如何调节尚不清楚。我们报告说,转录因子 LHX2 在皮质原基的祖细胞“母亲”细胞中是必需的,当它们产生其“女儿”基板神经元时,为了使丘脑皮质通路在基板处等待。没有基板祖细胞中的 LHX2 功能,丘脑皮质轴突越过基板,过早进入皮质板。随之而来的是它们的最终萎缩,以及成熟皮质感觉神经支配的严重丧失。