Suyetin Mikhail
Institute of Nanotechnology, Karlsruhe Institute of Technology, P. O. Box 3640, 76021 Karlsruhe, Germany.
Faraday Discuss. 2021 Oct 15;231(0):224-234. doi: 10.1039/d1fd00011j.
Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures).
多元线性回归分析作为机器学习的一部分,用于建立方程,以便快速准确地预测金属有机框架(MOF)的甲烷吸附量和工作容量。仅采用MOF的三个晶体特征(几何描述符)来建立方程:表面积、孔体积和晶体结构密度。与进行气体吸附计算或开展实验工作相比,几何描述符的值在时间和其他资源方面的获取成本要低得多。在这项工作中,针对所研究的不同情况提供了方程组:具有NbO拓扑结构的一系列MOF、一组具有出色甲烷储存和工作容量的基准MOF,以及整个CoRE MOF数据库(11000个结构)。