Suppr超能文献

气体吸附与几何深度学习:点、集合与匹配。

Gas adsorption meets geometric deep learning: points, set and match.

作者信息

Sarikas Antonios P, Gkagkas Konstantinos, Froudakis George E

机构信息

Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.

Advanced Technology Division, Toyota Motor Europe NV/SA, Technical Center, Hoge Wei 33B, 1930, Zaventem, Belgium.

出版信息

Sci Rep. 2024 Nov 9;14(1):27360. doi: 10.1038/s41598-024-76319-8.

Abstract

Thanks to their unique properties such as ultra high porosity and surface area, metal-organic frameworks (MOFs) are highly regarded materials for gas adsorption applications. However, their combinatorial nature results in a vast chemical space, precluding its exploration with traditional techniques. Recently, machine learning (ML) pipelines have been established as the go-to method for large scale screening by means of predictive models. These are typically built in a descriptor-based manner, meaning that the structure must be first coarse-grained into a 1D fingerprint before it is fed to the ML algorithm. As such, the latter can not fully exploit the 3D structural information, potentially resulting in a model of lower quality. In this work, we propose a descriptor-free framework called "AIdsorb", which can directly process raw structural information for predicting gas adsorption properties. To accomplish that, the structure is first treated as a point cloud and then passed to a deep learning algorithm suitable for point cloud analysis. As a proof of concept, AIdsorb is applied for predicting uptake in MOFs, outperforming a conventional pipeline that uses geometric descriptors as input. Additionally, to evaluate the transferability of the proposed framework to different host-guest systems, uptake in COFs is examined. Since AIdsorb bases its roots on raw structural information, its applicability extends to all fields of material science.

摘要

由于金属有机框架材料(MOFs)具有超高孔隙率和表面积等独特性质,它们在气体吸附应用中备受关注。然而,其组合性质导致了一个庞大的化学空间,使得用传统技术对其进行探索变得不可能。最近,机器学习(ML)管道已成为通过预测模型进行大规模筛选的首选方法。这些模型通常以基于描述符的方式构建,这意味着在将结构输入到ML算法之前,必须首先将其粗粒度化为一维指纹。因此,后者无法充分利用三维结构信息,可能导致模型质量较低。在这项工作中,我们提出了一个名为“AIdsorb”的无描述符框架,它可以直接处理原始结构信息来预测气体吸附特性。为此,首先将结构视为点云,然后将其传递给适合点云分析的深度学习算法。作为概念验证,AIdsorb被用于预测MOFs中的吸附量,其性能优于使用几何描述符作为输入的传统管道。此外,为了评估所提出框架对不同主客体系统的可转移性,还研究了COFs中的吸附量。由于AIdsorb基于原始结构信息,其适用性扩展到材料科学的所有领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d247/11550472/9e8caa18237c/41598_2024_76319_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验