IEEE J Biomed Health Inform. 2022 Feb;26(2):749-761. doi: 10.1109/JBHI.2021.3093932. Epub 2022 Feb 4.
Brain tissue segmentation in multi-modal magnetic resonance (MR) images is significant for the clinical diagnosis of brain diseases. Due to blurred boundaries, low contrast, and intricate anatomical relationships between brain tissue regions, automatic brain tissue segmentation without prior knowledge is still challenging. This paper presents a novel 3D fully convolutional network (FCN) for brain tissue segmentation, called APRNet. In this network, we first propose a 3D anisotropic pyramidal convolutional reversible residual sequence (3DAPC-RRS) module to integrate the intra-slice information with the inter-slice information without significant memory consumption; secondly, we design a multi-modal cross-dimension attention (MCDA) module to automatically capture the effective information in each dimension of multi-modal images; then, we apply 3DAPC-RRS modules and MCDA modules to a 3D FCN with multiple encoded streams and one decoded stream for constituting the overall architecture of APRNet. We evaluated APRNet on two benchmark challenges, namely MRBrainS13 and iSeg-2017. The experimental results show that APRNet yields state-of-the-art segmentation results on both benchmark challenge datasets and achieves the best segmentation performance on the cerebrospinal fluid region. Compared with other methods, our proposed approach exploits the complementary information of different modalities to segment brain tissue regions in both adult and infant MR images, and it achieves the average Dice coefficient of 87.22% and 93.03% on the MRBrainS13 and iSeg-2017 testing data, respectively. The proposed method is beneficial for quantitative brain analysis in the clinical study, and our code is made publicly available.
多模态磁共振(MR)图像中的脑组织分割对于脑疾病的临床诊断具有重要意义。由于边界模糊、对比度低以及脑组织区域之间的复杂解剖关系,在没有先验知识的情况下进行自动脑组织分割仍然具有挑战性。本文提出了一种新的用于脑组织分割的三维全卷积网络(FCN),称为 APRNet。在该网络中,我们首先提出了一种三维各向异性金字塔卷积可逆残差序列(3DAPC-RRS)模块,以在不显著增加内存消耗的情况下整合切片内信息和切片间信息;其次,我们设计了一种多模态跨维度注意力(MCDA)模块,以自动捕获多模态图像各维度的有效信息;然后,我们将 3DAPC-RRS 模块和 MCDA 模块应用于具有多个编码流和一个解码流的三维 FCN,以构成 APRNet 的整体架构。我们在两个基准挑战,即 MRBrainS13 和 iSeg-2017 上评估了 APRNet。实验结果表明,APRNet 在两个基准挑战数据集上均取得了最先进的分割结果,并在脑脊液区域实现了最佳分割性能。与其他方法相比,我们提出的方法利用了不同模态的互补信息来分割成人和婴儿 MR 图像中的脑组织区域,在 MRBrainS13 和 iSeg-2017 测试数据上分别获得了 87.22%和 93.03%的平均 Dice 系数。该方法有利于临床研究中的定量脑分析,我们的代码已公开。