Kim Jingyeom, Lee Joohyung, Kim Taeyeon
School of Computing, Gachon University, Seongnam 13120, Korea.
Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea.
Sensors (Basel). 2021 Jun 14;21(12):4089. doi: 10.3390/s21124089.
This paper presents a novel adaptive object movement and motion tracking (AdaMM) framework in a hierarchical edge computing system for achieving GPU memory footprint reduction of deep learning (DL)-based video surveillance services. DL-based object movement and motion tracking requires a significant amount of resources, such as (1) GPU processing power for the inference phase and (2) GPU memory for model loading. Despite the absence of an object in the video, if the DL model is loaded, the GPU memory must be kept allocated for the loaded model. Moreover, in several cases, video surveillance tries to capture events that rarely occur (e.g., abnormal object behaviors); therefore, such standby GPU memory might be easily wasted. To alleviate this problem, the proposed AdaMM framework categorizes the tasks used for the object movement and motion tracking procedure in an increasing order of the required processing and memory resources as task (1) frame difference calculation, task (2) object detection, and task (3) object motion and movement tracking. The proposed framework aims to adaptively release the unnecessary standby object motion and movement tracking model to save GPU memory by utilizing light tasks, such as frame difference calculation and object detection in a hierarchical manner. Consequently, object movement and motion tracking are adaptively triggered if the object is detected within the specified threshold time; otherwise, the GPU memory for the model of task (3) can be released. Moreover, object detection is also adaptively performed if the frame difference over time is greater than the specified threshold. We implemented the proposed AdaMM framework using commercial edge devices by considering a three-tier system, such as the 1st edge node for both tasks (1) and (2), the 2nd edge node for task (3), and the cloud for sending a push alarm. A measurement-based experiment reveals that the proposed framework achieves a maximum GPU memory reduction of 76.8% compared to the baseline system, while requiring a 2680 ms delay for loading the model for object movement and motion tracking.
本文提出了一种在分层边缘计算系统中的新型自适应对象移动与运动跟踪(AdaMM)框架,以实现基于深度学习(DL)的视频监控服务的GPU内存占用减少。基于DL的对象移动与运动跟踪需要大量资源,例如:(1)推理阶段所需的GPU处理能力,以及(2)用于模型加载的GPU内存。尽管视频中没有对象,但如果加载了DL模型,GPU内存必须为加载的模型保持分配状态。此外,在某些情况下,视频监控试图捕捉很少发生的事件(例如,异常对象行为);因此,这种备用GPU内存可能很容易被浪费。为缓解此问题,所提出的AdaMM框架将用于对象移动与运动跟踪过程的任务按所需处理和内存资源的升序分类为任务(1)帧差计算、任务(2)对象检测和任务(3)对象运动与移动跟踪。所提出的框架旨在通过分层利用诸如帧差计算和对象检测等轻量级任务,自适应地释放不必要的备用对象运动与移动跟踪模型,以节省GPU内存。因此,如果在指定的阈值时间内检测到对象,则自适应地触发对象移动与运动跟踪;否则,可以释放任务(3)模型的GPU内存。此外,如果随时间的帧差大于指定阈值,也会自适应地执行对象检测。我们通过考虑三层系统,使用商业边缘设备实现了所提出的AdaMM框架,例如用于任务(1)和(2)的第一边缘节点、用于任务(3)的第二边缘节点以及用于发送推送警报的云。基于测量的实验表明,与基线系统相比,所提出的框架实现了高达76.8%的最大GPU内存减少,同时加载对象移动与运动跟踪模型需要2680毫秒的延迟。