Chen Shia-Chung, Chang Che-Wei, Tseng Chia-Yen, Shen En-Nien, Feng Ching-Te
R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
R&D Center for Semiconductor Carrier, Chung Yuan Christian University, Taoyuan 32023, Taiwan .
Polymers (Basel). 2021 Jun 2;13(11):1843. doi: 10.3390/polym13111843.
Microcellular injection molding technology (MuCell) using supercritical fluid (SCF) as a foaming agent is one of the important green molding solutions for reducing the part weight, saving cycle time, and molding energy, and improving dimensional stability. In view of the environmental issues, the successful application of MuCell is becoming increasingly important. However, the molding process encounters difficulties including the sliver flow marks on the surface and unstable mechanical properties that are caused by the uneven foaming cell sizes within the part. In our previous studies, gas counter-pressure combined with dynamic molding temperature control was observed to be an effective and promising way of improving product quality. In this study, we extend this concept by incorporating additional parameters, such as gas pressure holding time and release time, and taking the mold cooling speed into account to form a P(pressure)-T(temperature) path in the SCF PT diagram. This study demonstrates the successful control of foaming cell size and uniformity in size distribution in microcellular injection molding of polystyrene (PS). A preliminary study in the molding of elastomer thermoplastic polyurethanes (TPU) using the P-T path also shows promising results.
以超临界流体(SCF)作为发泡剂的微注塑成型技术(MuCell)是减轻部件重量、节省周期时间和成型能量以及提高尺寸稳定性的重要绿色成型解决方案之一。鉴于环境问题,MuCell的成功应用变得越来越重要。然而,成型过程中会遇到困难,包括部件表面的银纹流痕以及由于部件内发泡泡孔尺寸不均匀而导致的机械性能不稳定。在我们之前的研究中,气体反压结合动态成型温度控制被认为是提高产品质量的有效且有前景的方法。在本研究中,我们通过纳入额外参数(如气体保压时间和释放时间)并考虑模具冷却速度,在SCF的PT图中形成P(压力)-T(温度)路径,从而扩展了这一概念。本研究证明了在聚苯乙烯(PS)的微注塑成型中能够成功控制发泡泡孔尺寸及其尺寸分布的均匀性。使用P-T路径对弹性体热塑性聚氨酯(TPU)进行成型的初步研究也显示出了有前景的结果。