Suppr超能文献

基于数字图像相关技术和机器学习的Co/WC型刀具材料微观-细观损伤演化实验研究

Experimental Investigations of Micro-Meso Damage Evolution for a Co/WC-Type Tool Material with Application of Digital Image Correlation and Machine Learning.

作者信息

Schneider Yanling, Zielke Reiner, Xu Chensheng, Tayyab Muhammad, Weber Ulrich, Schmauder Siegfried, Tillmann Wolfgang

机构信息

Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany.

RIF Institute for Research and Transfer e.V., Joseph-von-Fraunhofer Str. 20, D-44227 Dortmund, Germany.

出版信息

Materials (Basel). 2021 Jun 25;14(13):3562. doi: 10.3390/ma14133562.

Abstract

Commercial Co/WC/diamond composites are hard metals and very useful as a kind of tool material, for which both ductile and quasi-brittle behaviors are possible. This work experimentally investigates their damage evolution dependence on microstructural features. The current study investigates a different type of Co/WC-type tool material which contains 90 vol.% Co instead of the usual <50 vol.%. The studied composites showed quasi-brittle behavior. An in-house-designed testing machine realizes the in-situ micro-computed tomography (μCT) under loading. This advanced equipment can record local damage in 3D during the loading. The digital image correlation technique delivers local displacement/strain maps in 2D and 3D based on tomographic images. As shown by nanoindentation tests, matrix regions near diamond particles do not possess higher hardness values than other regions. Since local positions with high stress are often coincident with those with high strain, diamonds, which aim to achieve composites with high hardnesses, contribute to the strength less than the WC phase. Samples that illustrated quasi-brittle behavior possess about 100-130 MPa higher tensile strengths than those with ductile behavior. Voids and their connections (forming mini/small cracks) dominant the detected damages, which means void initiation, growth, and coalescence should be the damage mechanisms. The void appears in the form of debonding. Still, it is uncovered that debonding between Co-diamonds plays a major role in provoking fatal fractures for composites with quasi-brittle behavior. An optimized microstructure should avoid diamond clusters and their local volume concentrations. To improve the time efficiency and the object-identification accuracy in μCT image segmentation, machine learning (ML), U-Net in the convolutional neural network (deep learning), is applied. This method takes only about 40 min to segment more than 700 images, i.e., a great improvement of the time efficiency compared to the manual work and the accuracy maintained. The results mentioned above demonstrate knowledge about the strengthening and damage mechanisms for Co/WC/diamond composites with >50 vol.% Co. The material properties for such tool materials (>50 vol.% Co) is rarely published until now. Efforts made in the ML part contribute to the realization of autonomous processing procedures in big-data-driven science applied in materials science.

摘要

商业钴/碳化钨/金刚石复合材料是硬质合金,作为一种工具材料非常有用,其可能同时具有韧性和准脆性。这项工作通过实验研究了它们的损伤演化对微观结构特征的依赖性。当前的研究调查了一种不同类型的钴/碳化钨型工具材料,其钴含量为90体积%,而不是通常的<50体积%。所研究的复合材料表现出准脆性。一台内部设计的试验机实现了加载过程中的原位微观计算机断层扫描(μCT)。这种先进设备可以在加载过程中记录3D局部损伤。数字图像相关技术基于断层图像提供2D和3D局部位移/应变图。如纳米压痕测试所示,金刚石颗粒附近的基体区域并不比其他区域具有更高的硬度值。由于高应力局部位置通常与高应变局部位置重合,旨在实现高硬度复合材料的金刚石对强度的贡献小于WC相。表现出准脆性的样品的拉伸强度比具有韧性的样品高约100-130MPa。孔隙及其连接(形成微裂纹/小裂纹)主导了检测到的损伤,这意味着孔隙萌生、生长和合并应该是损伤机制。孔隙以脱粘的形式出现。然而,尚未发现钴-金刚石之间的脱粘在引发准脆性复合材料的致命断裂中起主要作用。优化的微观结构应避免金刚石团聚及其局部体积浓度。为了提高μCT图像分割中的时间效率和目标识别精度,应用了机器学习(ML),即卷积神经网络(深度学习)中的U-Net。该方法分割700多张图像仅需约40分钟,即与人工操作相比时间效率有了很大提高,且精度得以保持。上述结果展示了关于钴含量>50体积%的钴/碳化钨/金刚石复合材料的强化和损伤机制的知识。到目前为止,关于这种工具材料(钴含量>50体积%)的材料性能很少有报道。在机器学习部分所做的努力有助于在材料科学中应用的大数据驱动科学中实现自主处理程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18f1/8269701/1adbc9309540/materials-14-03562-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验