Shi Liuyong, Ding Hanghang, Zhong Xiangtao, Yin Binfeng, Liu Zhenyu, Zhou Teng
Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
Micromachines (Basel). 2021 Jun 24;12(7):744. doi: 10.3390/mi12070744.
In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier-Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection-diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote the comprehensive integration of functions in modern microfluidic-analysis systems.
在本文中,我们提出了一种基于光驱动交流电渗(LACE)的带有交错虚拟电极的新型微流控混合器。我们通过有限元方法(FEM)求解由纳维 - 斯托克斯方程描述的流场、由拉普拉斯方程描述的电场以及由对流 - 扩散方程描述的浓度场的耦合系统。此外,我们研究了微通道内流场、电场和浓度场的分布,揭示了微通道横截面上旋转涡旋的产生机制以及流体样品的混合机制。我们还探讨了虚拟电极的长度、宽度、间距以及微通道高度等几个关键几何参数对混合性能的影响;从而获得了相对优化的混合器结构。当前的微混合器基于光学虚拟电极提供了一种良好的流体混合方法,并可促进现代微流控分析系统中功能的全面集成。