Ducrée Jens
School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
Micromachines (Basel). 2021 Jun 15;12(6):700. doi: 10.3390/mi12060700.
Fluidic larger-scale integration (LSI) resides at the heart of comprehensive sample-to-answer automation and parallelization of assay panels for frequent and ubiquitous bioanalytical testing in decentralized point-of-use/point-of-care settings. This paper develops a novel "digital twin" strategy with an emphasis on rotational, centrifugo-pneumatic flow control. The underlying model systematically connects retention rates of rotationally actuated valves as a key element of LSI to experimental input parameters; for the first time, the concept of band widths in frequency space as the decisive quantity characterizing operational robustness is introduced, a set of quantitative performance metrics guiding algorithmic optimization of disc layouts is defined, and the engineering principles of advanced, logical flow control and timing are elucidated. Overall, the digital twin enables efficient design for automating multiplexed bioassay protocols on such "Lab-on-a-Disc" (LoaD) systems featuring high packing density, reliability, configurability, modularity, and manufacturability to eventually minimize cost, time, and risk of development and production.
流体大规模集成(LSI)是全面的样本到答案自动化以及在分散的使用点/护理点环境中进行频繁且普遍的生物分析测试的检测面板并行化的核心。本文提出了一种新颖的“数字孪生”策略,重点在于旋转式、离心气动流控制。基础模型系统地将旋转驱动阀的保留率作为LSI的关键要素与实验输入参数相联系;首次引入了频率空间中的带宽概念作为表征操作稳健性的决定性量,定义了一组指导盘布局算法优化的定量性能指标,并阐明了先进的逻辑流控制和定时的工程原理。总体而言,数字孪生能够对这种具有高封装密度、可靠性、可配置性、模块化和可制造性的“芯片实验室”(LoaD)系统上的多重生物测定协议自动化进行高效设计,最终将开发和生产成本、时间及风险降至最低。