Suppr超能文献

利用智能虚拟传感器节点提高室内定位系统的稳健性。

Using Smart Virtual-Sensor Nodes to Improve the Robustness of Indoor Localization Systems.

机构信息

School of Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil.

School of Information Technology, Halmstad University, 301 18 Halmstad, Sweden.

出版信息

Sensors (Basel). 2021 Jun 6;21(11):3912. doi: 10.3390/s21113912.

Abstract

Young, older, frail, and disabled individuals can require some form of monitoring or assistance, mainly when critical situations occur, such as falling and wandering. Healthcare facilities are increasingly interested in e-health systems that can detect and respond to emergencies on time. Indoor localization is an essential function in such e-health systems, and it typically relies on wireless sensor networks (WSN) composed of fixed and mobile nodes. Nodes in the network can become permanently or momentarily unavailable due to, for example, power failures, being out of range, and wrong placement. Consequently, unavailable sensors not providing data can compromise the system's overall function. One approach to overcome the problem is to employ virtual sensors as replacements for unavailable sensors and generate synthetic but still realistic data. This paper investigated the viability of modelling and artificially reproducing the path of a monitored target tracked by a WSN with unavailable sensors. Particularly, the case with just a single sensor was explored. Based on the coordinates of the last measured positions by the unavailable node, a neural network was trained with 4 min of not very linear data to reproduce the behavior of a sensor that become unavailable for about 2 min. Such an approach provided reasonably successful results, especially for areas close to the room's entrances and exits, which are critical for the security monitoring of patients in healthcare facilities.

摘要

老年人、体弱者和残疾人可能需要某种形式的监测或协助,主要是在发生关键情况时,例如跌倒和走失。医疗保健设施越来越关注能够及时检测和响应紧急情况的电子健康系统。室内定位是此类电子健康系统的基本功能,它通常依赖于由固定和移动节点组成的无线传感器网络 (WSN)。由于电源故障、超出范围和错误放置等原因,网络中的节点可能会永久或暂时不可用。因此,无法提供数据的不可用传感器可能会影响系统的整体功能。一种解决该问题的方法是使用虚拟传感器作为不可用传感器的替代品,并生成合成但仍然真实的数据。本文研究了用不可用传感器建模和人工再现 WSN 跟踪的被监测目标的路径的可行性。特别是探索了只有一个传感器的情况。基于不可用节点最后测量位置的坐标,使用 4 分钟的非线性数据训练神经网络,以再现大约 2 分钟不可用的传感器的行为。这种方法提供了相当成功的结果,尤其是在接近房间入口和出口的区域,这对于医疗保健设施中患者的安全监控至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e291/8201260/c46e348c8fcf/sensors-21-03912-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验